IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024002709.html
   My bibliography  Save this article

A holistic optimization-based approach for sustainable selection of level crossings for closure with safety, economic, and environmental considerations

Author

Listed:
  • Li, Bokang
  • Afkhami, Payam
  • Khayamim, Razieh
  • Elmi, Zeinab
  • Moses, Ren
  • Sobanjo, John
  • Ozguven, Eren E.
  • Dulebenets, Maxim A.

Abstract

An intersection of railway and highway segments at the same elevation, known as a highway-rail grade crossing or level crossing, presents significant safety concerns and operational challenges. To mitigate these issues, different methods can be adopted, such as implementation of countermeasures (e.g., installation of flashing lights, gates, and median barriers), grade separations, and level crossing closures. The closure of selected level crossings, when done thoughtfully in consultation with relevant stakeholders and affected communities, can be a highly effective alternative. However, the majority of studies in this field primarily focuses on the implementation of countermeasures and mainly concentrates on safety-related aspects. Considering the drawbacks in the current research, a novel optimization model to identify level crossings for closure is presented in this study, which evaluates various benefits from closing specifically selected level crossings, including safety, economic, and environmental benefits, as well as reduction in traffic delays and maintenance and operational costs. A specialized heuristic algorithm inspired by sorting principles is developed to solve the decision problem addressed in this study. A set of comprehensive computational experiments are performed focusing on level crossings situated in the State of Florida (United States). The findings show clear superiority of the developed heuristic algorithm against the exact method, as it was able to solve the generated problem instances ≈20 times faster with the average optimality gap of only 0.14 %. Additionally, various sensitivity analyses are performed to illustrate managerial implications from the implementation of the proposed optimization approach to administer closures of level crossings.

Suggested Citation

  • Li, Bokang & Afkhami, Payam & Khayamim, Razieh & Elmi, Zeinab & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2024. "A holistic optimization-based approach for sustainable selection of level crossings for closure with safety, economic, and environmental considerations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002709
    DOI: 10.1016/j.ress.2024.110197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junayed Pasha & Maxim A. Dulebenets & Olumide F. Abioye & Masoud Kavoosi & Ren Moses & John Sobanjo & Eren E. Ozguven, 2020. "A Comprehensive Assessment of the Existing Accident and Hazard Prediction Models for the Highway-Rail Grade Crossings in the State of Florida," Sustainability, MDPI, vol. 12(10), pages 1-27, May.
    2. Nguyen, Hoang & Bui, Xuan-Nam & Topal, Erkan, 2023. "Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Yong, Weixun & Zhang, Wengang & Nguyen, Hoang & Bui, Xuan-Nam & Choi, Yosoon & Nguyen-Thoi, Trung & Zhou, Jian & Tran, Trung Tin, 2022. "Analysis and prediction of diaphragm wall deflection induced by deep braced excavations using finite element method and artificial neural network optimized by metaheuristic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. Shirgir, Sina & Shamsaddinlou, Amir & Zare, Reza Najafi & Zehtabiyan, Sorour & Bonab, Masoud Hajialilue, 2023. "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Iranitalab, Amirfarrokh & Khattak, Aemal, 2020. "Probabilistic classification of hazardous materials release events in train incidents and cargo tank truck crashes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Vivek, Adheesh Kumar & Gupta, Somya & Khan, Tathagatha & Mohapatra, Smruti Sourava, 2024. "Strategies to mitigate safety and associated problems at gated rail road grade crossing: A structural equation modelling approach," Transport Policy, Elsevier, vol. 146(C), pages 19-30.
    10. Masoud Kavoosi & Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Ren Moses & John Sobanjo & Eren E. Ozguven, 2020. "Development of Algorithms for Effective Resource Allocation among Highway–Rail Grade Crossings: A Case Study for the State of Florida," Energies, MDPI, vol. 13(6), pages 1-28, March.
    11. Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Jiadong, Qiu & Ohl, Joy P. & Tran, Trung-Tin, 2024. "Predicting clay compressibility for foundation design with high reliability and safety: A geotechnical engineering perspective using artificial neural network and five metaheuristic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Young, William, 2017. "New method to estimate local and system-wide effects of level rail crossings on network traffic flow," Journal of Transport Geography, Elsevier, vol. 60(C), pages 89-97.
    15. Prashant Singh & Junayed Pasha & Amir Khorram-Manesh & Krzysztof Goniewicz & Abdolreza Roshani & Maxim A. Dulebenets, 2021. "A Holistic Analysis of Train-Vehicle Accidents at Highway-Rail Grade Crossings in Florida," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    16. Zhou, Hang & Lopes Genez, Thiago Augusto & Brintrup, Alexandra & Parlikad, Ajith Kumar, 2022. "A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Chris De Gruyter & Graham Currie, 2016. "Rail-road crossing impacts: an international synthesis," Transport Reviews, Taylor & Francis Journals, vol. 36(6), pages 793-815, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Jiadong, Qiu & Ohl, Joy P. & Tran, Trung-Tin, 2024. "Predicting clay compressibility for foundation design with high reliability and safety: A geotechnical engineering perspective using artificial neural network and five metaheuristic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Vivek, Adheesh Kumar & Gupta, Somya & Khan, Tathagatha & Mohapatra, Smruti Sourava, 2024. "Strategies to mitigate safety and associated problems at gated rail road grade crossing: A structural equation modelling approach," Transport Policy, Elsevier, vol. 146(C), pages 19-30.
    10. Shi, Lingyuan & Yang, Xin & Chang, Ximing & Wu, Jianjun & Sun, Huijun, 2023. "An improved density peaks clustering algorithm based on k nearest neighbors and turning point for evaluating the severity of railway accidents," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Anna Dolinayova & Vladislav Zitricky & Lenka Cerna, 2020. "Decision-Making Process in the Case of Insufficient Rail Capacity," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    13. Prashant Singh & Junayed Pasha & Amir Khorram-Manesh & Krzysztof Goniewicz & Abdolreza Roshani & Maxim A. Dulebenets, 2021. "A Holistic Analysis of Train-Vehicle Accidents at Highway-Rail Grade Crossings in Florida," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    14. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Tan, Qiong & Fu, Ming & Wang, Zhengxing & Yuan, Hongyong & Sun, Jinhua, 2024. "A real-time early warning classification method for natural gas leakage based on random forest," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    17. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    18. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Junayed Pasha & Maxim A. Dulebenets & Olumide F. Abioye & Masoud Kavoosi & Ren Moses & John Sobanjo & Eren E. Ozguven, 2020. "A Comprehensive Assessment of the Existing Accident and Hazard Prediction Models for the Highway-Rail Grade Crossings in the State of Florida," Sustainability, MDPI, vol. 12(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024002709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.