IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021005081.html
   My bibliography  Save this article

Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference

Author

Listed:
  • Kim, Kyeongsu
  • Lee, Gunhak
  • Park, Keonhee
  • Park, Seongho
  • Lee, Won Bo

Abstract

A framework to construct a model that predicts the corrosion defect distribution using a small amount of observation data is proposed in this study. A time-dependent generalized extreme value distribution was employed to consider the changing corrosion growth rate with time, and model parameters were estimated via Bayesian inferences to develop a robust prediction model. The model parameters were updated when a new batch of inspection data was available; previous data were not directly used but they indirectly assisted parameter estimation in the form of a prior distribution. In addition, an artificial data point representing a larger defect depth was added to the inspection data to ensure a conservative estimation of the model parameters and higher reliability of the model. The model was verified under three different cases, and the results showed that the suggested parameter estimation allowed the prediction model to adapt to the changing defect depth distribution in all three tested cases: 1) inspection data are available without measurement errors, 2) inspection data are available with measurement errors, and 3) the properties of the underground environment are drastically changed.

Suggested Citation

  • Kim, Kyeongsu & Lee, Gunhak & Park, Keonhee & Park, Seongho & Lee, Won Bo, 2021. "Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021005081
    DOI: 10.1016/j.ress.2021.107998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, Wellison J.S. & Beck, André T. & Haukaas, Terje, 2013. "Optimal inspection planning for onshore pipelines subject to external corrosion," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 18-27.
    2. A. Valor & F. Caleyo & L. Alfonso & J. C. Velázquez & J. M. Hallen, 2013. "Markov Chain Models for the Stochastic Modeling of Pitting Corrosion," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-13, July.
    3. Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaya-Gómez, Rafael & Schoefs, Franck & Sánchez-Silva, Mauricio & Muñoz, Felipe & Bastidas-Arteaga, Emilio, 2022. "Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Woloszyk, Krzysztof & Garbatov, Yordan, 2024. "A probabilistic-driven framework for enhanced corrosion estimation of ship structural components," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Na, Kyumin & Yoon, Heonjun & Kim, Jaedong & Kim, Sungjong & Youn, Byeng D., 2023. "PERL: Probabilistic energy-ratio-based localization for boiler tube leaks using descriptors of acoustic emission signals," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Tang, Cong & He, Shu-Yu & Zhou, Wan-Huan, 2022. "Settlement-based framework for long-term serviceability assessment of immersed tunnels," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Li, Xinhong & Jia, Ruichao & Zhang, Renren & Yang, Shangyu & Chen, Guoming, 2022. "A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Wang, Zeyu & Shafieezadeh, Abdollah & Xiao, Xiong & Wang, Xiaowei & Li, Quanwang, 2022. "Optimal monitoring location for tracking evolving risks to infrastructure systems: Theory and application to tunneling excavation risk," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Kroetz, H.M. & Moustapha, M. & Beck, A.T. & Sudret, B., 2020. "A Two-Level Kriging-Based Approach with Active Learning for Solving Time-Variant Risk Optimization Problems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Amaya-Gómez, Rafael & Schoefs, Franck & Sánchez-Silva, Mauricio & Muñoz, Felipe & Bastidas-Arteaga, Emilio, 2022. "Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    6. Chadha, Mayank & Ramancha, Mukesh K. & Vega, Manuel A. & Conte, Joel P. & Todd, Michael D., 2023. "The modeling of risk perception in the use of structural health monitoring information for optimal maintenance decisions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Zhao, Xufeng & Liu, Hu-Chen & Nakagawa, Toshio, 2015. "Where does “whichever occurs first†hold for preventive maintenance modelings?," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 203-211.
    9. Heidary, Roohollah & Groth, Katrina M., 2021. "A hybrid population-based degradation model for pipeline pitting corrosion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Bismut, Elizabeth & Pandey, Mahesh D. & Straub, Daniel, 2022. "Reliability-based inspection and maintenance planning of a nuclear feeder piping system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Dann, Markus R. & Maes, Marc A., 2018. "Stochastic corrosion growth modeling for pipelines using mass inspection data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 245-254.
    13. Medeiros, C.P. & Alencar, M.H. & de Almeida, A.T., 2017. "Multidimensional risk evaluation of natural gas pipelines based on a multicriteria decision model using visualization tools and statistical tests for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 268-276.
    14. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021005081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.