IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipbs0951832021006384.html
   My bibliography  Save this article

Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks

Author

Listed:
  • Wang, WuChang
  • Zhang, Yi
  • Li, YuXing
  • Hu, Qihui
  • Liu, Chengsong
  • Liu, Cuiwei

Abstract

The crucial part of vulnerability analysis is identifying the critical components of a pipeline network. In this study, we proposed a novel analysis method- “Risk-Vulnerability,†which combines the characteristics of risk assessments and vulnerability analyses methods. Risk-Vulnerability identifies the critical components of a pipeline network from three perspectives: pipeline operating status, transmission performance, and network characteristics. The formulas of the importance value of each component were established. Then the component risk indicators were established, and the component risk values were calculated. And a utility theory was introduced to calculate the severity of the consequences. Finally, the component importance and risk values were multiplied to obtain the vulnerability of the component. The feasibility and effectiveness of the method were verified by comparing the identification results of this method to those from the weighted flow capacity rate (WFCR). The Risk-Vulnerability method provides an improved insight into the pipeline criticality compared to the WFCR and improves the calculation formulae based on the identification content, which can not only be used to identify critical components, but also can be used to formulate research on risk reduction measures for pipeline network systems.

Suggested Citation

  • Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006384
    DOI: 10.1016/j.ress.2021.108150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    3. Yu, Weichao & Wen, Kai & Min, Yuan & He, Lei & Huang, Weihe & Gong, Jing, 2018. "A methodology to quantify the gas supply capacity of natural gas transmission pipeline system using reliability theory," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 128-141.
    4. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Wang, Can & Xie, Haipeng & Bie, Zhaohong & Li, Gengfeng & Yan, Chao, 2021. "Fast supply reliability evaluation of integrated power-gas system based on stochastic capacity network model and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Chakraborty, Suparna & Goyal, N.K. & Mahapatra, S. & Soh, Sieteng, 2020. "A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Praks, Pavel & Kopustinskas, Vytis & Masera, Marcelo, 2015. "Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 254-264.
    8. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    9. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    10. Heo, Wookjae & Grable, John E. & Rabbani, Abed G., 2018. "A test of the relevant association between utility theory and subjective risk tolerance: Introducing the Profit-to-Willingness ratio," Journal of Behavioral and Experimental Finance, Elsevier, vol. 19(C), pages 84-88.
    11. Liu, Cuiwei & Wang, Yazhen & Li, Xinhong & Li, Yuxing & Khan, Faisal & Cai, Baoping, 2021. "Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    12. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Lanzano, Giovanni & Salzano, Ernesto & de Magistris, Filippo Santucci & Fabbrocino, Giovanni, 2013. "Seismic vulnerability of natural gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 73-80.
    14. Mohammad Saied Dehghani & Hanif D. Sherali, 2016. "A resource allocation approach for managing critical network-based infrastructure systems," IISE Transactions, Taylor & Francis Journals, vol. 48(9), pages 826-837, September.
    15. Chen, Qian & Zuo, Lili & Wu, Changchun & Bu, Yaran & Lu, Yifei & Huang, Yanfei & Chen, Feng, 2020. "Short-term supply reliability assessment of a gas pipeline system under demand variations," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Pavlović, Darko & Banovac, Eraldo & Vištica, Nikola, 2018. "Defining a composite index for measuring natural gas supply security - The Croatian gas market case," Energy Policy, Elsevier, vol. 114(C), pages 30-38.
    18. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    19. Kraidi, Layth & Shah, Raj & Matipa, Wilfred & Borthwick, Fiona, 2020. "Using stakeholders’ judgement and fuzzy logic theory to analyze the risk influencing factors in oil and gas pipeline projects: Case study in Iraq, Stage II," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    20. Jane, Chin-Chia & Laih, Yih-Wenn, 2017. "Distribution and reliability evaluation of max-flow in dynamic multi-state flow networks," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1045-1053.
    21. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    22. Xiang, W. & Zhou, W., 2021. "Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    23. Kraidi, Layth & Shah, Raj & Matipa, Wilfred & Borthwick, Fiona, 2019. "Analyzing the critical risk factors associated with oil and gas pipeline projects in Iraq," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 14-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuntao & Wang, Yumeng & Lai, Yuying & Shuai, Jian & Zhang, Laibin, 2023. "Monte Carlo-based quantitative risk assessment of parking areas for vehicles carrying hazardous chemicals," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Jiang, Qiangqiang & Cai, Baoping & Zhang, Yanping & Xie, Min & Liu, Cuiwei, 2023. "Resilience assessment methodology of natural gas network system under random leakage," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2023. "A multi-objective optimization model for identifying groups of critical elements in a high-speed train," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Zhou, Jun & Zhu, Jiaxing & Liang, Guangchuan & Ma, Junjie & He, Jiayi & Du, Penghua & Ye, Zhanpeng, 2024. "Three-layer and robust planning models to evaluate the strategies of defense layer, attack layer, and operation layer for optimal protection in natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Yang, Kai & Hou, Lei & Man, Jianfeng & Yu, Qiaoyan & Li, Yu & Zhang, Xinru & Liu, Jiaquan, 2023. "Supply reliability analysis of natural gas pipeline network based on demand-side economic loss risk," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Jing, Qi & Li, Tong & Lai, Yuying & Wang, Yumeng & Li, Yuntao & Qi, Sheng, 2024. "Study on risk assessment models for the aggregation of vehicles transporting hazardous chemicals," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Sergey Vorobev & Anton Kolosnitsyn & Ilya Minarchenko, 2022. "Determination of the Most Interconnected Sections of Main Gas Pipelines Using the Maximum Clique Method," Energies, MDPI, vol. 15(2), pages 1-14, January.
    8. Senderov, Sergey M. & Vorobev, Sergey V. & Smirnova, Elena M., 2022. "Peak underground gas storage efficiency in reducing the vulnerability of gas supply to consumers in an extensive gas transmission system," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    10. Jian Guo & Jun Wang & Baikang Zhu & Bingyuan Hong & Cuicui Li & Jianhui He, 2022. "A Risk Evaluation Method of Coastal Oil Depots for Heavy Rainfall Vulnerability Assessment," Sustainability, MDPI, vol. 14(11), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qian & Zuo, Lili & Wu, Changchun & Li, Yun & Hua, Kaixun & Mehrtash, Mahdi & Cao, Yankai, 2022. "Optimization of compressor standby schemes for gas transmission pipeline systems based on gas delivery reliability," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    3. Jiang, Qiangqiang & Cai, Baoping & Zhang, Yanping & Xie, Min & Liu, Cuiwei, 2023. "Resilience assessment methodology of natural gas network system under random leakage," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    5. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    6. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Shan, Xiangying & Yu, Weichao & Hu, Bing & Wen, Kai & Ren, Shipeng & Men, Yang & Li, Mingrui & Gong, Jing & Zheng, Honglong & Hong, Bingyuan, 2024. "A methodology to determine target gas supply reliability of natural gas pipeline system based on cost-benefit analysis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    9. Wang, Can & Xie, Haipeng & Bie, Zhaohong & Li, Gengfeng & Yan, Chao, 2021. "Fast supply reliability evaluation of integrated power-gas system based on stochastic capacity network model and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Galvan, Giulio & Agarwal, Jitendra, 2020. "Assessing the vulnerability of infrastructure networks based on distribution measures," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    11. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    12. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    14. Zhou, Jun & Zhu, Jiaxing & Liang, Guangchuan & Ma, Junjie & He, Jiayi & Du, Penghua & Ye, Zhanpeng, 2024. "Three-layer and robust planning models to evaluate the strategies of defense layer, attack layer, and operation layer for optimal protection in natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    16. Senderov, Sergey M. & Vorobev, Sergey V. & Smirnova, Elena M., 2022. "Peak underground gas storage efficiency in reducing the vulnerability of gas supply to consumers in an extensive gas transmission system," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    18. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Beyza, Jesus & Gil, Pablo & Masera, Marcelo & Yusta, Jose M., 2020. "Security assessment of cross-border electricity interconnections," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    20. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.