IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021005883.html
   My bibliography  Save this article

Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method

Author

Listed:
  • Zhou, Tuqiang
  • Wu, Wanting
  • Peng, Liqun
  • Zhang, Mingyang
  • Li, Zhixiong
  • Xiong, Yubing
  • Bai, Yuelong

Abstract

Unreliable transit services can negatively impact transit ridership and discourage passengers from regularly choosing public transport. As the most important content of bus service reliability, accurate bus arrival prediction can improve travel efficiency for enabling a reliable and convenient transportation system. Accordingly, this paper proposes a novel deep learning method, i.e. variational mode decomposition long short-term memory (VMD-LSTM), for bus travel speed prediction in urban traffic networks using a forecast of bus arrival information on variable time horizons. The method uses the temporal and spatial patterns of the average bus speed series. The results show that the VMD-LSTM model outperforms other models on forecasting bus link speed series in future time intervals, whereas the artificial neural network model achieves the worst prediction. In conclusion, the VMD-LSTM method can detect irregular peaks of transit samples from a series of temporal or spatial variations and performs better on major and auxiliary corridors.

Suggested Citation

  • Zhou, Tuqiang & Wu, Wanting & Peng, Liqun & Zhang, Mingyang & Li, Zhixiong & Xiong, Yubing & Bai, Yuelong, 2022. "Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005883
    DOI: 10.1016/j.ress.2021.108090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leong, Waiyan & Goh, Karen & Hess, Stephane & Murphy, Paul, 2016. "Improving bus service reliability: The Singapore experience," Research in Transportation Economics, Elsevier, vol. 59(C), pages 40-49.
    2. Deng, Yingjun & Bucchianico, Alessandro Di & Pechenizkiy, Mykola, 2020. "Controlling the accuracy and uncertainty trade-off in RUL prediction with a surrogate Wiener propagation model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    5. da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
    4. Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
    5. Zhang, Lin & Wen, Huiying & Lu, Jian & Lei, Da & Li, Shubin & Ukkusuri, Satish V., 2022. "Exploring cascading reliability of multi-modal public transit network based on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
    7. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Zhou, Zhengshu & Matsubara, Yutaka & Takada, Hiroaki, 2023. "Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Dai, Baorui & Xia, Ye & Li, Qi, 2022. "An extreme value prediction method based on clustering algorithm," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Nguyen, Khanh T.P. & Medjaher, Kamal & Gogu, Christian, 2022. "Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    14. Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Liu, Shujie & Fan, Lexian, 2022. "An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    19. Xu, Danyang & Qiu, Haobo & Gao, Liang & Yang, Zan & Wang, Dapeng, 2022. "A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.