IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021004063.html
   My bibliography  Save this article

Optimal adaptive inspection and maintenance planning for deteriorating structural systems

Author

Listed:
  • Bismut, Elizabeth
  • Straub, Daniel

Abstract

Optimizing inspection and maintenance (I&M) plans for a large deteriorating structure is a computationally challenging task, in particular if one considers interdependences among its components. This is due to the sheer number of possible decision alternatives over the lifetime of the structure and the uncertainty surrounding the deterioration processes, the structural performance and the outcomes of inspection and maintenance actions. To address this challenge, Luque and Straub (2019) proposed a heuristic approach in which I&M plans for structural systems are defined through a set of simple decision rules. Here, we formalize the optimization of these decision rules and extend the approach to enable adaptive planning. The initially optimal I&M plan is successively adapted throughout the service life, based on past inspection and monitoring results. The proposed methodology uses stochastic deterioration models and accounts for the interdependence among structural components. The heuristic-based adaptive planning is illustrated for a structural frame subjected to fatigue.

Suggested Citation

  • Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021004063
    DOI: 10.1016/j.ress.2021.107891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    2. Jannie Sønderkær Nielsen & John Dalsgaard Sørensen, 2014. "Methods for Risk-Based Planning of O&M of Wind Turbines," Energies, MDPI, vol. 7(10), pages 1-20, October.
    3. Christos H. Papadimitriou & John N. Tsitsiklis, 1987. "The Complexity of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 441-450, August.
    4. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    5. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    6. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    7. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    9. Donald Rosenfield, 1976. "Markovian Deterioration With Uncertain Information — A More General Model," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 389-405, September.
    10. Barone, Giorgio & Frangopol, Dan M., 2014. "Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 21-37.
    11. Zhu, Jiandao & Collette, Matthew, 2015. "A dynamic discretization method for reliability inference in Dynamic Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 242-252.
    12. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    13. Durango, Pablo L. & Madanat, Samer M., 2002. "Optimal maintenance and repair policies in infrastructure management under uncertain facility deterioration rates: an adaptive control approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 763-778, November.
    14. Rafic Faddoul & Abdul-Hamid Soubra & Wassim Raphael & Alaa Chateauneuf, 2013. "Extension of dynamic programming models for management optimization from single structure to multi-structures level," Post-Print hal-01006860, HAL.
    15. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    16. Rafic Faddoul & Abdul-Hamid Soubra & Wassim Raphael & A. Chateauneuf, 2013. "Extension of dynamic programming models for management optimization from single structure to multi-structures level," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01006860, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Bismut, Elizabeth & Pandey, Mahesh D. & Straub, Daniel, 2022. "Reliability-based inspection and maintenance planning of a nuclear feeder piping system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2022. "Optimal preventive switching of components in degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Marko Kinne & Sebastian Thöns, 2023. "Fatigue Reliability Based on Predicted Posterior Stress Ranges Determined from Strain Measurements of Wind Turbine Support Structures," Energies, MDPI, vol. 16(5), pages 1-26, February.
    7. Lee, Dooyoul & Kwon, Kybeom, 2023. "Dynamic Bayesian network model for comprehensive risk analysis of fatigue-critical structural details," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Mendoza, Jorge & Bismut, Elizabeth & Straub, Daniel & Köhler, Jochen, 2022. "Optimal life-cycle mitigation of fatigue failure risk for structural systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Oh, So Young & Joung, Chanwoo & Lee, Seonghwan & Shim, Yoon-Bo & Lee, Dahun & Cho, Gyu-Eun & Jang, Juhyeong & Lee, In Yong & Park, Young-Bin, 2024. "Condition-based maintenance of wind turbine structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    3. de Jonge, Bram, 2019. "Discretizing continuous-time continuous-state deterioration processes, with an application to condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 1-5.
    4. Bismut, Elizabeth & Pandey, Mahesh D. & Straub, Daniel, 2022. "Reliability-based inspection and maintenance planning of a nuclear feeder piping system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    6. Rafic Faddoul & Wassim Raphael & Abdul-Hamid Soubra & Alaa Chateauneuf, 2013. "Incorporating Bayesian networks in Markov Decision Processes," Post-Print hal-01006963, HAL.
    7. Thomas Michael Welte & Iver Bakken Sperstad & Espen Høegh Sørum & Magne Lorentzen Kolstad, 2017. "Integration of Degradation Processes in a Strategic Offshore Wind Farm O&M Simulation Model," Energies, MDPI, vol. 10(7), pages 1-18, July.
    8. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    10. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    11. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    12. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    13. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    14. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    17. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    18. Liu, Biyu & Pang, Jie & Yang, Haidong & Zhao, Yilin, 2024. "Optimal condition-based maintenance policy for leased equipment considering hybrid preventive maintenance and periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021004063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.