IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v224y2022ics0951832022001764.html
   My bibliography  Save this article

Reliability-based inspection and maintenance planning of a nuclear feeder piping system

Author

Listed:
  • Bismut, Elizabeth
  • Pandey, Mahesh D.
  • Straub, Daniel

Abstract

Inspection and maintenance (I&M) is essential to ensure the integrity of feeder pipes, which are parts of the primary heat transport system in a nuclear power plant. The pipes are subject to flow accelerated corrosion (FAC), which can compromise the integrity of the piping system and lead to high repair costs. We explore the opportunity for improving I&M strategies while ensuring that the system still maintains an acceptable level of reliability. To this aim, a reliability-based planning framework is proposed, in which every pipe in the system meets the minimum thickness requirement at a specified annual probability. With this planning framework we can a) evaluate the performance of any I&M strategy constrained to a fixed reliability criterion, without requiring this strategy to be specifically designed for such a criterion; and b) find an I&M strategy optimized for this reliability level using a heuristic description of the strategy space. We demonstrate the framework with a case study, where the wall thinning due to FAC is modeled as a Gamma process with uncertain parameters. We compare the expected life-cycle cost of multiple strategies for I&M of a feeder system with 480 pipes. The proposed approach is compared with an I&M strategy currently used by the industry, which highlights the efficiency of the proposed optimization method.

Suggested Citation

  • Bismut, Elizabeth & Pandey, Mahesh D. & Straub, Daniel, 2022. "Reliability-based inspection and maintenance planning of a nuclear feeder piping system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001764
    DOI: 10.1016/j.ress.2022.108521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barone, Giorgio & Frangopol, Dan M., 2014. "Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 21-37.
    2. Faddoul, R. & Raphael, W. & Chateauneuf, A., 2018. "Maintenance optimization of series systems subject to reliability constraints," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 179-188.
    3. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Li, Heping & Deloux, Estelle & Dieulle, Laurence, 2016. "A condition-based maintenance policy for multi-component systems with Lévy copulas dependence," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 44-55.
    5. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    6. Bressi, Sara & Santos, João & Losa, Massimo, 2021. "Optimization of maintenance strategies for railway track-bed considering probabilistic degradation models and different reliability levels," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Durango, Pablo L. & Madanat, Samer M., 2002. "Optimal maintenance and repair policies in infrastructure management under uncertain facility deterioration rates: an adaptive control approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 763-778, November.
    8. repec:dau:papers:123456789/1908 is not listed on IDEAS
    9. Do, Phuc & Bérenguer, Christophe, 2020. "Conditional reliability-based importance measures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Yuan, Xian-Xun & Higo, Eishiro & Pandey, Mahesh D., 2021. "Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    13. Zio, E. & Viadana, G., 2011. "Optimization of the inspection intervals of a safety system in a nuclear power plant by Multi-Objective Differential Evolution (MODE)," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1552-1563.
    14. Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    15. Flage, Roger & Coit, David W. & Luxhøj, James T. & Aven, Terje, 2012. "Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 16-26.
    16. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byun, Ji-Eun & de Oliveira, Welington & Royset, Johannes O., 2023. "S-BORM: Reliability-based optimization of general systems using buffered optimization and reliability method," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Jiang, Fengyuan & Dong, Sheng, 2024. "Probabilistic-based burst failure mechanism analysis and risk assessment of pipelines with random non-uniform corrosion defects, considering the interacting effects," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Mocellin, Paolo & Pilenghi, Lisa, 2023. "Semi-quantitative approach to prioritize risk in industrial chemical plants aggregating safety, economics and ageing: A case study," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Guo, Yongjin & Wang, Hongdong & Guo, Yu & Zhong, Mingjun & Li, Qing & Gao, Chao, 2022. "System operational reliability evaluation based on dynamic Bayesian network and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    6. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Zheng, Meimei & Lin, Jie & Xia, Tangbin & Liu, Yu & Pan, Ershun, 2023. "Joint condition-based maintenance and spare provisioning policy for a K-out-of-N system with failures during inspection intervals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1220-1232.
    8. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    9. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    11. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2021. "A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    15. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
    18. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    19. Zhang, Chengjie & Qi, Faqun & Zhang, Ning & Li, Yong & Huang, Hongzhong, 2022. "Maintenance policy optimization for multi-component systems considering dynamic importance of components," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Mendoza, Jorge & Bismut, Elizabeth & Straub, Daniel & Köhler, Jochen, 2022. "Optimal life-cycle mitigation of fatigue failure risk for structural systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.