IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics095183202100332x.html
   My bibliography  Save this article

Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization

Author

Listed:
  • Kwag, Shinyoung
  • Choi, Eujeong
  • Eem, Seunghyun
  • Ha, Jeong-Gon
  • Hahm, Daegi

Abstract

As a seismic probabilistic safety assessment (SPSA) method for nuclear facilities, direct quantification of fault tree using the Monte Carlo simulation (DQFM) was developed to accurately consider the partial dependency between components. However, since this is a sampling-based method, there is a disadvantage in that a large number of samples must be extracted for accurate seismic risk estimation. Accordingly, this study develops an efficient SPSA method by improving the existing DQFM method. We replace the method of extracting samples from both seismic response and capacity at each component by that of taking samples only from a single response distribution with a composite deviation. Also, a method of adaptive discretization for seismic intensity (ADSI) is devised by linking the seismic intensity subdivision with the convergence of the final seismic risk. The Monte-Carlo sampling technique is replaced by the Latin hypercube sampling. As an application result to nuclear facilities, the proposed method requires only half samples for every seismic intensity than the existing DQFM method, while the accuracy of results was almost similar. Besides, through the ADSI method, the proposed method was able to secure approximately three times efficiency more than the existing DQFM method, without losing the accuracy of the results.

Suggested Citation

  • Kwag, Shinyoung & Choi, Eujeong & Eem, Seunghyun & Ha, Jeong-Gon & Hahm, Daegi, 2021. "Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s095183202100332x
    DOI: 10.1016/j.ress.2021.107809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100332X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
    2. Kwag, Shinyoung & Park, Junhee & Choi, In-Kil, 2020. "Development of efficient complete-sampling-based seismic PSA method for nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2018. "An improved multi-unit nuclear plant seismic probabilistic risk assessment approach," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 34-47.
    4. Shinyoung Kwag & Daegi Hahm, 2020. "Multi-objective-based seismic fragility relocation for a Korean nuclear power plant," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3633-3659, September.
    5. Shinyoung Kwag & Jeong Gon Ha & Min Kyu Kim & Jung Han Kim, 2019. "Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities," Energies, MDPI, vol. 12(20), pages 1-25, October.
    6. Hakata, Tadakuni, 2007. "Seismic PSA method for multiple nuclear power plants in a site," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 883-894.
    7. Eujeong Choi & Shinyoung Kwag & Jeong-Gon Ha & Daegi Hahm, 2021. "Development of a Two-Stage DQFM to Improve Efficiency of Single- and Multi-Hazard Risk Quantification for Nuclear Facilities," Energies, MDPI, vol. 14(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domeh, Vindex & Obeng, Francis & Khan, Faisal & Bose, Neil & Sanli, Elizabeth, 2023. "An operational risk awareness tool for small fishing vessels operating in harsh environment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Polina Lemenkova & Olivier Debeir, 2022. "Seismotectonics of Shallow-Focus Earthquakes in Venezuela with Links to Gravity Anomalies and Geologic Heterogeneity Mapped by a GMT Scripting Language," Sustainability, MDPI, vol. 14(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Kwag, Shinyoung & Park, Junhee & Choi, In-Kil, 2020. "Development of efficient complete-sampling-based seismic PSA method for nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2021. "A Bayesian Network Approach for Modeling Dependent Seismic Failures in a Nuclear Power Plant Probabilistic Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Woo Sik Jung, 2021. "A Method to Avoid Underestimated Risks in Seismic SUPSA and MUPSA for Nuclear Power Plants Caused by Partitioning Events," Energies, MDPI, vol. 14(8), pages 1-13, April.
    5. Cai, Yinan & Golay, Michael W., 2020. "Formulation of A Risk Assessment Framework Capable of Analyzing Nuclear Power Multiunit Accident Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Eujeong Choi & Shinyoung Kwag & Jeong-Gon Ha & Daegi Hahm, 2021. "Development of a Two-Stage DQFM to Improve Efficiency of Single- and Multi-Hazard Risk Quantification for Nuclear Facilities," Energies, MDPI, vol. 14(4), pages 1-21, February.
    8. Shinyoung Kwag & Jinsung Kwak & Hwanho Lee & Jinho Oh & Gyeong-Hoi Koo, 2019. "Enhancement in the Seismic Performance of a Nuclear Piping System using Multiple Tuned Mass Dampers," Energies, MDPI, vol. 12(11), pages 1-26, May.
    9. Xiaohui Chen & Lin Zhang & Ze Zhang, 2020. "An integrated model for maintenance policies and production scheduling based on immune–culture algorithm," Journal of Risk and Reliability, , vol. 234(5), pages 651-663, October.
    10. Liming Mu & Yingzhi Zhang & Qiyan Zhang, 2023. "Risk Evaluation Method Based on Fault Propagation and Diffusion," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    11. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Shinyoung Kwag & Daegi Hahm, 2020. "Multi-objective-based seismic fragility relocation for a Korean nuclear power plant," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3633-3659, September.
    13. Pang, Rui & Zai, Dezhi & Xu, Bin & Liu, Jun & Zhao, Chunfeng & Fan, Qunying & Chen, Yuting, 2023. "Stochastic dynamic and reliability analysis of AP1000 nuclear power plants via DPIM subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    15. Jin, Song & Gong, Jinxin, 2021. "Fragility analysis and probabilistic performance evaluation of nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    16. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    17. Zhao, Yan-Gang & Qin, Miao-Jun & Lu, Zhao-Hui & Zhang, Long-Wen, 2021. "Seismic fragility analysis of nuclear power plants considering structural parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Takeda, Satoshi & Kitada, Takanori, 2021. "Simple method based on sensitivity coefficient for stochastic uncertainty analysis in probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Zhou, Taotao & Droguett, Enrique López & Modarres, Mohammad, 2020. "A common cause failure model for components under age-related degradation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Zheng, Zhi & Tian, Aonan & Pan, Xiaolan & Ji, Duofa & Wang, Yong, 2024. "The damage-based fragility analysis and probabilistic safety assessment of containment under internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s095183202100332x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.