IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v209y2021ics0951832021000399.html
   My bibliography  Save this article

Simple method based on sensitivity coefficient for stochastic uncertainty analysis in probabilistic risk assessment

Author

Listed:
  • Takeda, Satoshi
  • Kitada, Takanori

Abstract

For the analysis of stochastic uncertainty in probabilistic risk assessment, a simple method based on the sensitivity coefficient was developed. The sensitivity coefficient can be defined as the importance of the parameter included in the risk assessment model to the output such as the probability of the target event. When the contribution of the parameter to the output is assumed to be linear, the sensitivity coefficient equals Fussell-Vesely importance. The present method does not require a lot of calculation cost and can treat the covariance of the parameters included in the risk assessment directly. The result obtained by the present method was compared with that obtained by other methods such as the Monte Carlo method in the analysis of the simple fault tree model. The results of the present method agree well with Monte Carlo method in the analysis of the fault tree model with β factor method and that with the Multiple Greek Letter method.

Suggested Citation

  • Takeda, Satoshi & Kitada, Takanori, 2021. "Simple method based on sensitivity coefficient for stochastic uncertainty analysis in probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000399
    DOI: 10.1016/j.ress.2021.107471
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
    2. Kamyab, Shahabeddin & Nematollahi, Mohammadreza & Henneaux, Pierre & Labeau, Pierre-Etienne, 2021. "Development of a hybrid method to assess grid-related LOOP scenarios for an NPP," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    3. Sakurahara, Tatsuya & Mohaghegh, Zahra & Reihani, Seyed & Kee, Ernie & Brandyberry, Mark & Rodgers, Shawn, 2018. "An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 242-257.
    4. Kelly, Dana L. & Smith, Curtis L., 2009. "Bayesian inference in probabilistic risk assessment—The current state of the art," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 628-643.
    5. Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
    6. Ronald L. Iman & Jon C. Helton, 1991. "The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 591-606, December.
    7. Silva, Kampanart & Okamoto, Koji, 2018. "Discussion on probability of cesium-137 release exceeding 100 TBq as a part of the consideration of nuclear power plant probabilistic risk criteria for environmental protection," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 88-93.
    8. Ashraf Ben El‐Shanawany & Keith H. Ardron & Simon P. Walker, 2018. "Lognormal Approximations of Fault Tree Uncertainty Distributions," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1576-1584, August.
    9. Zhao, Yunfei & Huang, Linan & Smidts, Carol & Zhu, Quanyan, 2020. "Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahimi, Mehrdad & Nobahar, Elnaz & Mohammadi, Reza Karami & Noroozinejad Farsangi, Ehsan & Noori, Mohammad & Li, Shaofan, 2023. "The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    2. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    4. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    5. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    6. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    8. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    10. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Shinyoung Kwag & Jinsung Kwak & Hwanho Lee & Jinho Oh & Gyeong-Hoi Koo, 2019. "Enhancement in the Seismic Performance of a Nuclear Piping System using Multiple Tuned Mass Dampers," Energies, MDPI, vol. 12(11), pages 1-26, May.
    12. Douglas L. Van Bossuyt & Bryan M. O'Halloran & Ryan M. Arlitt, 2019. "A method of identifying and analyzing irrational system behavior in a system of systems," Systems Engineering, John Wiley & Sons, vol. 22(6), pages 519-537, November.
    13. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Farshad BahooToroody & Saeed Khalaj & Leonardo Leoni & Filippo De Carlo & Gianpaolo Di Bona & Antonio Forcina, 2021. "Reliability Estimation of Reinforced Slopes to Prioritize Maintenance Actions," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    15. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Greco, Salvatore F. & Podofillini, Luca & Dang, Vinh N., 2021. "A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    17. Bjorkman, Kim, 2013. "Solving dynamic flowgraph methodology models using binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 206-216.
    18. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Zhiyong Li & Wubin Wen & Rende Dai & Wanting Xi, 2022. "Reliability Evaluation of Smart Substation Based on Time-Varying Probabilistic Hybrid Attack Graph," Energies, MDPI, vol. 15(18), pages 1-15, September.
    20. Yan, Zhenyu & Haimes, Yacov Y., 2010. "Cross-classified hierarchical Bayesian models for risk-based analysis of complex systems under sparse data," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 764-776.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.