Development of a Two-Stage DQFM to Improve Efficiency of Single- and Multi-Hazard Risk Quantification for Nuclear Facilities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shinyoung Kwag & Daegi Hahm, 2020. "Multi-objective-based seismic fragility relocation for a Korean nuclear power plant," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3633-3659, September.
- Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
- Shinyoung Kwag & Jeong Gon Ha & Min Kyu Kim & Jung Han Kim, 2019. "Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities," Energies, MDPI, vol. 12(20), pages 1-25, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kwag, Shinyoung & Choi, Eujeong & Eem, Seunghyun & Ha, Jeong-Gon & Hahm, Daegi, 2021. "Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kwag, Shinyoung & Choi, Eujeong & Eem, Seunghyun & Ha, Jeong-Gon & Hahm, Daegi, 2021. "Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Shinyoung Kwag & Jeong Gon Ha & Min Kyu Kim & Jung Han Kim, 2019. "Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities," Energies, MDPI, vol. 12(20), pages 1-25, October.
- Wan Fang & Guo Haixiang & Li Jinling & Gu Mingyun & Pan Wenwen, 2021. "Multi-objective Emergency Scheduling for Geological Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1323-1358, January.
More about this item
Keywords
single hazard; multi-hazard; risk quantification; nuclear power plant (NPP); direct quantification of the fault tree using Monte Carlo simulation (DQFM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1017-:d:499866. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.