IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1017-d499866.html
   My bibliography  Save this article

Development of a Two-Stage DQFM to Improve Efficiency of Single- and Multi-Hazard Risk Quantification for Nuclear Facilities

Author

Listed:
  • Eujeong Choi

    (Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Korea)

  • Shinyoung Kwag

    (Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea)

  • Jeong-Gon Ha

    (Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Korea)

  • Daegi Hahm

    (Structural Safety and Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Korea)

Abstract

The probabilistic safety assessment (PSA) of a nuclear power plant (NPP) under single and multiple hazards is one of the most important tasks for disaster risk management of nuclear facilities. To date, various approaches—including the direct quantification of the fault tree using the Monte Carlo simulation (DQFM) method—have been employed to quantify single- and multi-hazard risks to nuclear facilities. The major advantage of the DQFM method is its applicability to a partially correlated system. Other methods can represent only an independent or a fully correlated system, but DQFM can quantify the risk of partially correlated system components by the sampling process. However, as a sampling-based approach, DQFM involves computational costs which increase as the size of the system and the number of hazards increase. Therefore, to improve the computational efficiency of the conventional DQFM, a two-stage DQFM method is proposed in this paper. By assigning enough samples to each hazard point according to its contribution to the final risk, the proposed two-stage DQFM can effectively reduce computational costs for both single- and multi-hazard risk quantification. Using examples of single- and multi-hazard threats to nuclear facilities, the effectiveness of the proposed two-stage DQFM is successfully demonstrated. Especially, two-stage DQFM saves computation time of conventional DQFM up to 72% for multi-hazard example.

Suggested Citation

  • Eujeong Choi & Shinyoung Kwag & Jeong-Gon Ha & Daegi Hahm, 2021. "Development of a Two-Stage DQFM to Improve Efficiency of Single- and Multi-Hazard Risk Quantification for Nuclear Facilities," Energies, MDPI, vol. 14(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1017-:d:499866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shinyoung Kwag & Daegi Hahm, 2020. "Multi-objective-based seismic fragility relocation for a Korean nuclear power plant," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3633-3659, September.
    2. Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
    3. Shinyoung Kwag & Jeong Gon Ha & Min Kyu Kim & Jung Han Kim, 2019. "Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities," Energies, MDPI, vol. 12(20), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwag, Shinyoung & Choi, Eujeong & Eem, Seunghyun & Ha, Jeong-Gon & Hahm, Daegi, 2021. "Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwag, Shinyoung & Choi, Eujeong & Eem, Seunghyun & Ha, Jeong-Gon & Hahm, Daegi, 2021. "Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Shinyoung Kwag & Jeong Gon Ha & Min Kyu Kim & Jung Han Kim, 2019. "Development of Efficient External Multi-Hazard Risk Quantification Methodology for Nuclear Facilities," Energies, MDPI, vol. 12(20), pages 1-25, October.
    3. Wan Fang & Guo Haixiang & Li Jinling & Gu Mingyun & Pan Wenwen, 2021. "Multi-objective Emergency Scheduling for Geological Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1323-1358, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1017-:d:499866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.