IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v213y2021ics0951832021002921.html
   My bibliography  Save this article

A formal method for including the probability of erroneous human task behavior in system analyses

Author

Listed:
  • Bolton, Matthew L.
  • Zheng, Xi
  • Kang, Eunsuk

Abstract

Formal methods have been making inroads into the engineering of human–automation interaction (HAI) by allowing engineers to use mathematical proofs to determine whether normative or unanticipated erroneous human behavior can ever cause problems. However, these approaches are limited because they do not give engineers a way to assess the relative likelihood of different outcomes. In this work, we address this shortcoming by defining a new approach that combines formal approaches with human reliability analysis and probabilistic and statistical model checking. This approach ultimately allows analysts to compute the probability of different outcomes occurring in reactive HAI systems. We describe how this method was realized, assess its scalability, and demonstrate its capabilities with an automated teller machine example. We ultimately discuss our results and describe directions of future research.

Suggested Citation

  • Bolton, Matthew L. & Zheng, Xi & Kang, Eunsuk, 2021. "A formal method for including the probability of erroneous human task behavior in system analyses," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021002921
    DOI: 10.1016/j.ress.2021.107764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021002921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xuhong & Wang, Yao & Shen, Zupei & Huang, Xiangrui, 2008. "A simplified CREAM prospective quantification process and its application," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 298-306.
    2. Reer, Bernhard, 2008. "Review of advances in human reliability analysis of errors of commission—Part 2: EOC quantification," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1105-1122.
    3. Raffaele Iannone & Salvatore Miranda & Stefano Riemma & Valentina Di Pasquale, 2013. "An Overview of Human Reliability Analysis Techniques in Manufacturing Operations," Chapters, in: Massimiliano M. Schiraldi (ed.), Operations Management, IntechOpen.
    4. Bedford, Tim & Bayley, Clare & Revie, Matthew, 2013. "Screening, sensitivity, and uncertainty for the CREAM method of Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 100-110.
    5. Bolton, Matthew L. & Molinaro, Kylie A. & Houser, Adam M., 2019. "A formal method for assessing the impact of task-based erroneous human behavior on system safety," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 168-180.
    6. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    4. Selvik, Jon T. & Bellamy, Linda J., 2020. "Addressing human error when collecting failure cause information in the oil and gas industry: A review of ISO 14224:2016," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    5. Zheng, Xi & Bolton, Matthew L. & Daly, Christopher & Biltekoff, Elliot, 2020. "The development of a next-generation human reliability analysis: Systems analysis for formal pharmaceutical human reliability (SAFPHâ–ª)," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    9. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    10. Garg, Vipul & Vinod, Gopika & Kant, Vivek, 2023. "Auto-CREAM: Software application for evaluation of HEP with basic and extended CREAM for PSA studies," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Preischl, Wolfgang & Hellmich, Mario, 2016. "Human error probabilities from operational experience of German nuclear power plants, Part II," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 44-56.
    12. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    13. Anvarifar, Fatemeh & Voorendt, Mark Z. & Zevenbergen, Chris & Thissen, Wil, 2017. "An application of the Functional Resonance Analysis Method (FRAM) to risk analysis of multifunctional flood defences in the Netherlands," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 130-141.
    14. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    16. Park, J. & Chang, Y.J. & Kim, Y. & Choi, S. & Kim, S. & Jung, W., 2017. "The use of the SACADA taxonomy to analyze simulation records: Insights and suggestions," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 174-183.
    17. Preischl, Wolfgang & Hellmich, Mario, 2013. "Human error probabilities from operational experience of German nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 150-159.
    18. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Qin, Hao & Stewart, Mark G., 2020. "Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    20. Landry, Steven J. & Lagu, Amit & Kinnari, Jouko, 2010. "State-based modeling of continuous human-integrated systems: An application to air traffic separation assurance," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 345-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021002921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.