IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v115y2013icp100-110.html
   My bibliography  Save this article

Screening, sensitivity, and uncertainty for the CREAM method of Human Reliability Analysis

Author

Listed:
  • Bedford, Tim
  • Bayley, Clare
  • Revie, Matthew

Abstract

This paper reports a sensitivity analysis of the Cognitive Reliability and Error Analysis Method for Human Reliability Analysis. We consider three different aspects: the difference between the outputs of the Basic and Extended methods, on the same HRA scenario; the variability in outputs through the choices made for common performance conditions (CPCs); and the variability in outputs through the assignment of choices for cognitive function failures (CFFs). We discuss the problem of interpreting categories when applying the method, compare its quantitative structure to that of first generation methods and discuss also how dependence is modelled with the approach. We show that the control mode intervals used in the Basic method are too narrow to be consistent with the Extended method. This motivates a new screening method that gives improved accuracy with respect to the Basic method, in the sense that (on average) halves the uncertainty associated with the Basic method. We make some observations on the design of a screening method that are generally applicable in Risk Analysis. Finally, we propose a new method of combining CPC weights with nominal probabilities so that the calculated probabilities are always in range (i.e. between 0 and 1), while satisfying sensible properties that are consistent with the overall CREAM method.

Suggested Citation

  • Bedford, Tim & Bayley, Clare & Revie, Matthew, 2013. "Screening, sensitivity, and uncertainty for the CREAM method of Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 100-110.
  • Handle: RePEc:eee:reensy:v:115:y:2013:i:c:p:100-110
    DOI: 10.1016/j.ress.2013.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201300046X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xuhong & Wang, Yao & Shen, Zupei & Huang, Xiangrui, 2008. "A simplified CREAM prospective quantification process and its application," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 298-306.
    2. Konstandinidou, Myrto & Nivolianitou, Zoe & Kiranoudis, Chris & Markatos, Nikolaos, 2006. "A fuzzy modeling application of CREAM methodology for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 706-716.
    3. anonymous, 1995. "Economist examines financial derivatives risk," Financial Update, Federal Reserve Bank of Atlanta, vol. 8(Jan), pages 1-4.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    2. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Bolton, Matthew L. & Zheng, Xi & Kang, Eunsuk, 2021. "A formal method for including the probability of erroneous human task behavior in system analyses," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Garg, Vipul & Vinod, Gopika & Kant, Vivek, 2023. "Auto-CREAM: Software application for evaluation of HEP with basic and extended CREAM for PSA studies," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Su, Xiaoyan & Mahadevan, Sankaran & Xu, Peida & Deng, Yong, 2014. "Inclusion of task dependence in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 41-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan, 2022. "An extended HEART Dempster–Shafer evidence theory approach to assess human reliability for the gas freeing process on chemical tankers," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Bing Wu & Xinping Yan & Yang Wang & C. Guedes Soares, 2017. "An Evidential Reasoning‐Based CREAM to Human Reliability Analysis in Maritime Accident Process," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1936-1957, October.
    4. Nan, Cen & Eusgeld, Irene & Kröger, Wolfgang, 2013. "Analyzing vulnerabilities between SCADA system and SUC due to interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 76-93.
    5. Marzio Marseguerra & Enrico Zio & Massimo Librizzi, 2007. "Human Reliability Analysis by Fuzzy “CREAM”," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 137-154, February.
    6. Donghun Lee & Hyungju Kim & Kwiyeon Koo & Sooyeon Kwon, 2024. "Human Reliability Analysis for Fishing Vessels in Korea Using Cognitive Reliability and Error Analysis Method (CREAM)," Sustainability, MDPI, vol. 16(9), pages 1-26, April.
    7. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    8. Attar, Andrea & Campioni, Eloisa & Piaser, Gwenaël, 2018. "On competing mechanisms under exclusive competition," Games and Economic Behavior, Elsevier, vol. 111(C), pages 1-15.
    9. Carole Duval & Geoffrey Fallet-Fidry & Benoît Iung & Philippe Weber & Eric Levrat, 2012. "A Bayesian network-based integrated risk analysis approach for industrial systems: application to heat sink system and prospects development," Journal of Risk and Reliability, , vol. 226(5), pages 488-507, October.
    10. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    11. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    12. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    13. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Dimitriou, Harry T. & Ward, E. John & Dean, Marco, 2016. "Presenting the case for the application of multi-criteria analysis to mega transport infrastructure project appraisal," Research in Transportation Economics, Elsevier, vol. 58(C), pages 7-20.
    15. Luca Podofillini & Vinh Dang & Enrico Zio & Piero Baraldi & Massimo Librizzi, 2010. "Using Expert Models in Human Reliability Analysis—A Dependence Assessment Method Based on Fuzzy Logic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1277-1297, August.
    16. Powell, J.H. & Mustafee, N. & Chen, A.S. & Hammond, M., 2016. "System-focused risk identification and assessment for disaster preparedness: Dynamic threat analysis," European Journal of Operational Research, Elsevier, vol. 254(2), pages 550-564.
    17. Oguz, Elif & Kubicek, Martin & Clelland, David, 2018. "Failure modes and criticality analysis of the preliminary design phase of the Mars Desert Research Station considering human factors," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 247-254.
    18. Qin, Hao & Stewart, Mark G., 2020. "Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    19. Veland, H. & Aven, T., 2013. "Risk communication in the light of different risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 34-40.
    20. Alan M. Taylor, 2002. "A Century Of Purchasing-Power Parity," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 139-150, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:115:y:2013:i:c:p:100-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.