IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics095183201931066x.html
   My bibliography  Save this article

The development of a next-generation human reliability analysis: Systems analysis for formal pharmaceutical human reliability (SAFPHâ–ª)

Author

Listed:
  • Zheng, Xi
  • Bolton, Matthew L.
  • Daly, Christopher
  • Biltekoff, Elliot

Abstract

Medication errors originating in community pharmacies are a serious patient safety hazard. However, due to the complexity of the community pharmacy environment, current experimental and observational studies are insufficient to address these problems. Furthermore, the static nature of traditional, model-based human reliability analyses (HRAs) are not able to handle the dynamic environmental elements that can impact human performance. To address this issue and allow analysts to accurately predict medication error rates, we develop a new HRA called the Systems Analysis for Formal Pharmaceutical Human Reliability (SAFPHâ–ª). This method addresses the limits of previous HRAs by combining concepts from the Cognitive Reliability and Error Analysis Method (CREAM) HRA with probabilistic model checking, a computational tool for automatically proving properties about complex, stochastic systems. In this paper, we use SAFPHâ–ª to analyze a common community pharmacy dispensing procedure, compare our results to published error rates, and use our results to explore interventions that could reduce error rates. We ultimately discuss our results and explore how our method could be developed in future research.

Suggested Citation

  • Zheng, Xi & Bolton, Matthew L. & Daly, Christopher & Biltekoff, Elliot, 2020. "The development of a next-generation human reliability analysis: Systems analysis for formal pharmaceutical human reliability (SAFPHâ–ª)," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s095183201931066x
    DOI: 10.1016/j.ress.2020.106927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201931066X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106927?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reer, Bernhard, 2008. "Review of advances in human reliability analysis of errors of commission—Part 2: EOC quantification," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1105-1122.
    2. Liao, Huafei & Forester, John & Dang, Vinh N. & Bye, Andreas & Chang, Yung Hsien J. & Lois, Erasmia, 2019. "Assessment of HRA method predictions against operating crew performance: Part I: Study background, design and methodology," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Reer, Bernhard, 2008. "Review of advances in human reliability analysis of errors of commission, Part 1: EOC identification," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1091-1104.
    4. Liao, Huafei & Forester, John & Dang, Vinh N. & Bye, Andreas & Chang, Yung Hsien J. & Lois, Erasmia, 2019. "Assessment of HRA method predictions against operating crew performance: Part III: Conclusions and achievements," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Kim, Man Cheol & Seong, Poong Hyun & Hollnagel, Erik, 2006. "A probabilistic approach for determining the control mode in CREAM," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 191-199.
    6. Zhao, Yunfei & Smidts, Carol, 2019. "A method for systematically developing the knowledge base of reactor operators in nuclear power plants to support cognitive modeling of operator performance," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 64-77.
    7. Bolton, Matthew L. & Molinaro, Kylie A. & Houser, Adam M., 2019. "A formal method for assessing the impact of task-based erroneous human behavior on system safety," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 168-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2021. "Analysis of recent operational events involving inappropriate actions: influencing factors and root causes," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Kim, Yochan & Choi, Sun Yeong & Park, Jinkyun & Kim, Jaewhan, 2022. "Empirical study on human error probability of procedure-extraneous behaviors," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    5. Preischl, Wolfgang & Hellmich, Mario, 2016. "Human error probabilities from operational experience of German nuclear power plants, Part II," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 44-56.
    6. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Greco, Salvatore F. & Podofillini, Luca & Dang, Vinh N., 2021. "A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    8. Preischl, Wolfgang & Hellmich, Mario, 2013. "Human error probabilities from operational experience of German nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 150-159.
    9. Landry, Steven J. & Lagu, Amit & Kinnari, Jouko, 2010. "State-based modeling of continuous human-integrated systems: An application to air traffic separation assurance," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 345-353.
    10. Park, Jinkyun, 2024. "A framework to determine the holistic multiplier of performance shaping factors in human reliability analysis – An explanatory study," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Bolton, Matthew L. & Zheng, Xi & Kang, Eunsuk, 2021. "A formal method for including the probability of erroneous human task behavior in system analyses," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Podofillini, L. & Dang, V.N. & Nusbaumer, O. & Dres, D., 2013. "A pilot study for errors of commission for a boiling water reactor using the CESA method," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 86-98.
    13. Zhao, Yunfei, 2022. "A Bayesian approach to comparing human reliability analysis methods using human performance data," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Vanderhaegen, Frédéric & Zieba, Stéphane & Enjalbert, Simon & Polet, Philippe, 2011. "A Benefit/Cost/Deficit (BCD) model for learning from human errors," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 757-766.
    15. Garg, Vipul & Vinod, Gopika & Prasad, Mahendra & Chattopadhyay, J. & Smith, Curtis & Kant, Vivek, 2023. "Human reliability analysis studies from simulator experiments using Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Kim, Yochan & Park, Jinkyun & Presley, Mary, 2021. "Selecting significant contextual factors and estimating their effects on operator reliability in computer-based control rooms," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Marzio Marseguerra & Enrico Zio & Massimo Librizzi, 2007. "Human Reliability Analysis by Fuzzy “CREAM”," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 137-154, February.
    19. Reer, Bernhard, 2008. "Review of advances in human reliability analysis of errors of commission—Part 2: EOC quantification," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1105-1122.
    20. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s095183201931066x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.