IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v164y2017icp124-135.html
   My bibliography  Save this article

Probabilistic risk assessment on maritime spent nuclear fuel transportation—Part I: Transport cask damage probability

Author

Listed:
  • Christian, Robby
  • Kang, Hyun Gook

Abstract

This paper proposes a methodology to assess and reduce risks on Spent Nuclear Fuel (SNF) packages from ship collisions with a probabilistic approach. A method to estimate the impact energy upon a collision was elaborated in consideration that whether ships slide or stuck to each other during collision. Structural crash-worthiness of the SNF ship was obtained through a non-linear finite element analysis. Cask damage probability was calculated based on frontal and side cask impact scenarios. This cask damage probability was investigated over various transport parameters which include the number of transport casks carried per shipment, cask stowage configuration, cask loading direction, and ship's cruise velocity.

Suggested Citation

  • Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation—Part I: Transport cask damage probability," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 124-135.
  • Handle: RePEc:eee:reensy:v:164:y:2017:i:c:p:124-135
    DOI: 10.1016/j.ress.2016.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016308730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Liu, Qiang & Tang, Aiping & Huang, Delong & Huang, Ziyuan & Zhang, Bin & Xu, Xiuchen, 2022. "Total probabilistic measure for the potential risk of regional roads exposed to landslides," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Tao, Longlong & Chen, Liwei & Ge, Daochuan & Yao, Yuantao & Ruan, Fang & Wu, Jie & Yu, Jie, 2022. "An integrated probabilistic risk assessment methodology for maritime transportation of spent nuclear fuel based on event tree and hydrodynamic model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    4. Guizhen Zhang & Vinh V. Thai & Adrian Wing‐Keung Law & Kum Fai Yuen & Hui Shan Loh & Qingji Zhou, 2020. "Quantitative Risk Assessment of Seafarers’ Nonfatal Injuries Due to Occupational Accidents Based on Bayesian Network Modeling," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 8-23, January.
    5. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    6. Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
    7. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    8. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Yamin Huang & P. H. A. J. M. van Gelder, 2020. "Time‐Varying Risk Measurement for Ship Collision Prevention," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 24-42, January.
    11. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Chen, Hong & Lam, Jasmine Siu Lee & Liu, Nan, 2018. "Strategic investment in enhancing port–hinterland container transportation network resilience: A network game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 83-112.
    13. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Haapasaari, Päivi & Helle, Inari & Lehikoinen, Annukka & Lappalainen, Jouni & Kuikka, Sakari, 2015. "A proactive approach for maritime safety policy making for the Gulf of Finland: Seeking best practices," Marine Policy, Elsevier, vol. 60(C), pages 107-118.
    15. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Shiqi Fan & Zaili Yang & Eduardo Blanco-Davis & Jinfen Zhang & Xinping Yan, 2020. "Analysis of maritime transport accidents using Bayesian networks," Journal of Risk and Reliability, , vol. 234(3), pages 439-454, June.
    17. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Liye Zhang & Hua Wang & Qiang Meng & Hongbin Xie, 2019. "Ship accident consequences and contributing factors analyses using ship accident investigation reports," Journal of Risk and Reliability, , vol. 233(1), pages 35-47, February.
    20. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:164:y:2017:i:c:p:124-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.