IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v213y2021ics0951832021001939.html
   My bibliography  Save this article

Development of Dependence Indexes for Multi-Unit Risk Assessment and its Estimation Using Copula

Author

Listed:
  • Jin, Kyungho
  • Hwang, Yujeong
  • Heo, Gyunyoung

Abstract

Since the Fukushima nuclear accident, the importance of evaluating risks for multiple units has been emphasized. With this motivation, surrogate metrics such as the core damage frequency (CDF) have been revised to represent those of a site, for instance, the site CDF (SCDF). While SCDF has been proposed to assess the risk of multiple units, it is desirable to provide an additional metric how much dependencies are contributed to the site. The conditional probability of multi-unit accident (CPMA) has also been proposed to describe dependency, however it handles a specific unit, not a site. Therefore, in this paper, the site CPMA and the site dependence index (SDI) are developed to describe inter-unit dependencies. The site CPMA is defined to apply to a site and uses the concept of CPMA. The SDI is derived from the concepts of banking stability used for financial linkages. As an alternative option, this paper also proposes a way to approximately estimate the proposed indexes using copulas and two-unit models for n-units in a site. The SDIs for four units at a site were evaluated using the copula-based model and the fully developed four-unit MUPSA model. The results from each model were comparable.

Suggested Citation

  • Jin, Kyungho & Hwang, Yujeong & Heo, Gyunyoung, 2021. "Development of Dependence Indexes for Multi-Unit Risk Assessment and its Estimation Using Copula," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021001939
    DOI: 10.1016/j.ress.2021.107652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2019. "Multi-unit risk aggregation with consideration of uncertainty and bias in risk metrics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 473-482.
    3. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    4. Modarres, Mohammad & Zhou, Taotao & Massoud, Mahmoud, 2017. "Advances in multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 87-100.
    5. Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Rui & Zai, Dezhi & Xu, Bin & Liu, Jun & Zhao, Chunfeng & Fan, Qunying & Chen, Yuting, 2023. "Stochastic dynamic and reliability analysis of AP1000 nuclear power plants via DPIM subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Yoo, Heejong & Heo, Gyunyoung, 2023. "Analysis of site operating state contributions for multi-unit PSA with Korean NPP Sites," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arigi, Awwal Mohammed & Park, Gayoung & Kim, Jonghyun, 2020. "Dependency analysis method for human failure events in multi-unit probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Zhiwei Bai & Hongkui Wei & Yingying Xiao & Shufang Song & Sergei Kucherenko, 2021. "A Vine Copula-Based Global Sensitivity Analysis Method for Structures with Multidimensional Dependent Variables," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    5. Yoon, Jae Young & Kim, Dong-San, 2022. "Estimating the adverse effects of inter-unit radioactive release on operator actions at a multi-unit site," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    7. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    8. Woo Sik Jung, 2021. "A Method to Avoid Underestimated Risks in Seismic SUPSA and MUPSA for Nuclear Power Plants Caused by Partitioning Events," Energies, MDPI, vol. 14(8), pages 1-13, April.
    9. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    10. Xiaohui Chen & Lin Zhang & Ze Zhang, 2020. "An integrated model for maintenance policies and production scheduling based on immune–culture algorithm," Journal of Risk and Reliability, , vol. 234(5), pages 651-663, October.
    11. Ulf Schepsmeier & Jakob Stöber, 2014. "Derivatives and Fisher information of bivariate copulas," Statistical Papers, Springer, vol. 55(2), pages 525-542, May.
    12. Jang, Seunghyun & Kim, Yongjin & Jae, Moosung, 2021. "A site risk assessment for internal events: A case study," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Geon Gyu Choi & Woo Sik Jung & Seong Kyu Park, 2021. "Sensitivity Study on the Correlation Level of Seismic Failures in Seismic Probabilistic Safety Assessments," Energies, MDPI, vol. 14(10), pages 1-20, May.
    14. Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
    15. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    16. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Jang, Seunghyun & Jae, Moosung, 2020. "A development of methodology for assessing the inter-unit common cause failure in multi-unit PSA model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2019. "Multi-unit risk aggregation with consideration of uncertainty and bias in risk metrics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 473-482.
    19. Kathryn Wifvat & John Kumerow & Arkady Shemyakin, 2020. "Copula Model Selection for Vehicle Component Failures Based on Warranty Claims," Risks, MDPI, vol. 8(2), pages 1-15, June.
    20. Craiu, V. Radu & Sabeti, Avideh, 2012. "In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 106-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021001939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.