IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p903-d1034215.html
   My bibliography  Save this article

The Method of Calculating the Frequency of the Initiating Event in a Dual-Unit Site with the Example of LOOP Events

Author

Listed:
  • Wanxin Feng

    (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Engineering Co., Ltd., Shenzhen 518172, China
    Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206, China)

  • Ming Wang

    (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Engineering Co., Ltd., Shenzhen 518172, China)

  • Zhixin Xu

    (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Engineering Co., Ltd., Shenzhen 518172, China)

  • Yu Yu

    (Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206, China)

Abstract

In a nuclear power plant, the consequences of a multi-unit event occurring concurrently are more serious than those of a single-unit event. The first step in the probabilistic safety analysis of multi-units is to analyze the initiating events and calculate the frequency of initiating events for simultaneous events of multiple units. The difficulty in using the fault tree model is that the known data are all frequency data from a single unit and cannot be logically multiplied. In this paper, taking a dual unit as an example, we used the formula to convert the probability of failure of the second unit within 72 h and then build a fault tree model. After analyzing the results of the dual unit, the most frequent cut set was the common cause of failure of the main transformer and of the switching failure of the main and auxiliary external power. The final calculation of the frequency of simultaneous loss of off-site power events for the dual units within 72 h was 3.22 × 10 −4 /year. After comparing with the single-unit results, it was found that the common cause failure of each unit’s independent equipment was the main reason for the occurrence of a loss of off-site power. Shared equipment in a single unit was ranked low in all the cut sets (such as the stability of the external grid for the main and auxiliary power systems) but was ranked high in multiple units. The calculation results of the frequency of initiating events of double units were two orders of magnitude lower than those of a single unit. However, the consequences of simultaneous events of multiple units were higher than those of single reactors. Therefore, attention should be paid to the risk of a simultaneous loss of off-site power event of multiple units.

Suggested Citation

  • Wanxin Feng & Ming Wang & Zhixin Xu & Yu Yu, 2023. "The Method of Calculating the Frequency of the Initiating Event in a Dual-Unit Site with the Example of LOOP Events," Energies, MDPI, vol. 16(2), pages 1-8, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:903-:d:1034215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    2. Modarres, Mohammad & Zhou, Taotao & Massoud, Mahmoud, 2017. "Advances in multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 87-100.
    3. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Jae Young & Kim, Dong-San, 2022. "Estimating the adverse effects of inter-unit radioactive release on operator actions at a multi-unit site," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Jang, Seunghyun & Kim, Yongjin & Jae, Moosung, 2021. "A site risk assessment for internal events: A case study," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. Woo Sik Jung, 2021. "A Method to Avoid Underestimated Risks in Seismic SUPSA and MUPSA for Nuclear Power Plants Caused by Partitioning Events," Energies, MDPI, vol. 14(8), pages 1-13, April.
    6. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Geon Gyu Choi & Woo Sik Jung & Seong Kyu Park, 2021. "Sensitivity Study on the Correlation Level of Seismic Failures in Seismic Probabilistic Safety Assessments," Energies, MDPI, vol. 14(10), pages 1-20, May.
    8. Alanen, Jarmo & Linnosmaa, Joonas & Malm, Timo & Papakonstantinou, Nikolaos & Ahonen, Toni & Heikkilä, Eetu & Tiusanen, Risto, 2022. "Hybrid ontology for safety, security, and dependability risk assessments and Security Threat Analysis (STA) method for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Jang, Seunghyun & Jae, Moosung, 2020. "A development of methodology for assessing the inter-unit common cause failure in multi-unit PSA model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Arigi, Awwal Mohammed & Park, Gayoung & Kim, Jonghyun, 2020. "Dependency analysis method for human failure events in multi-unit probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Jin, Kyungho & Hwang, Yujeong & Heo, Gyunyoung, 2021. "Development of Dependence Indexes for Multi-Unit Risk Assessment and its Estimation Using Copula," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2019. "Multi-unit risk aggregation with consideration of uncertainty and bias in risk metrics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 473-482.
    14. Zhang, Sai & Du, Mengyu & Tong, Jiejuan & Li, Yan-Fu, 2019. "Multi-objective optimization of maintenance program in multi-unit nuclear power plant sites," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 532-548.
    15. Kim, Man Cheol, 2022. "Systematic approach and mathematical development for conditional core damage probabilities under station blackout of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "Precursors and startling lessons: Statistical analysis of 1250 events with safety significance from the civil nuclear sector," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    17. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    18. Xiaohui Chen & Lin Zhang & Ze Zhang, 2020. "An integrated model for maintenance policies and production scheduling based on immune–culture algorithm," Journal of Risk and Reliability, , vol. 234(5), pages 651-663, October.
    19. Yoo, Heejong & Heo, Gyunyoung, 2023. "Analysis of site operating state contributions for multi-unit PSA with Korean NPP Sites," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Mandelli, D. & Parisi, C. & Alfonsi, A. & Maljovec, D. & Boring, R. & Ewing, S. & St Germain, S. & Smith, C. & Rabiti, C. & Rasmussen, M., 2019. "Multi-unit dynamic PRA," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 303-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:903-:d:1034215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.