IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021003951.html
   My bibliography  Save this article

A site risk assessment for internal events: A case study

Author

Listed:
  • Jang, Seunghyun
  • Kim, Yongjin
  • Jae, Moosung

Abstract

Site risk assessment (SRA) is to estimate the risk of accidents that are probable to occur on the site. The group of accidents consists of not only the initiating events inducing impact on a single unit, but also the events causing simultaneous malfunctions, such as reactor trip on more than 2 units by common causes, called common-cause initiators (CCIs). These events need to be distinguished at the initiating event analysis and the accident progress should be analyzed separately to conduct the SRA. Furthermore, inter-unit dependencies such as inter-unit common-cause failure (CCF) and unavailability of shared components should be treated appropriately to model the accident sequences with CCI events. In this study, in order to perform the SRA of a reference site, the accident history of nuclear power plants in Korea is investigated to identify single-unit initiators (SUIs) and CCIs for SRA and to calculate the frequency of each initiator. The Level 1 SRA model is developed implementing inter-unit dependencies, unavailability of alternate AC diesel generator and inter-unit CCF. In addition, re-evaluation of failure probability of off-site power recovery is performed. Using these models, site core damage frequency (SCDF) and the site risk indicators identified in this study are calculated to deduce the impact of the multi-unit factors considered in SRA. It is expected that the SRA model developed in this study can be applied to perform the site risk assessment for the other site and contributes to improve the safety from the site risk perspective.

Suggested Citation

  • Jang, Seunghyun & Kim, Yongjin & Jae, Moosung, 2021. "A site risk assessment for internal events: A case study," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003951
    DOI: 10.1016/j.ress.2021.107876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021003951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    2. Kim, Dong-San & Park, Jin Hee & Lim, Ho-Gon, 2020. "A pragmatic approach to modeling common cause failures in multi-unit PSA for nuclear power plant sites with a large number of units," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Zhang, Sai & Tong, Jiejuan & Zhao, Jun, 2016. "An integrated modeling approach for event sequence development in multi-unit probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 147-159.
    4. Modarres, Mohammad & Zhou, Taotao & Massoud, Mahmoud, 2017. "Advances in multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 87-100.
    5. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Jang, Seunghyun & Jae, Moosung, 2020. "A development of methodology for assessing the inter-unit common cause failure in multi-unit PSA model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Yoo, Heejong & Heo, Gyunyoung, 2023. "Analysis of site operating state contributions for multi-unit PSA with Korean NPP Sites," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Yoon, Jae Young & Kim, Dong-San, 2022. "Estimating the adverse effects of inter-unit radioactive release on operator actions at a multi-unit site," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Geon Gyu Choi & Woo Sik Jung & Seong Kyu Park, 2021. "Sensitivity Study on the Correlation Level of Seismic Failures in Seismic Probabilistic Safety Assessments," Energies, MDPI, vol. 14(10), pages 1-20, May.
    5. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Arigi, Awwal Mohammed & Park, Gayoung & Kim, Jonghyun, 2020. "Dependency analysis method for human failure events in multi-unit probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Wanxin Feng & Ming Wang & Zhixin Xu & Yu Yu, 2023. "The Method of Calculating the Frequency of the Initiating Event in a Dual-Unit Site with the Example of LOOP Events," Energies, MDPI, vol. 16(2), pages 1-8, January.
    8. Soga, Shota & Higo, Eishiro & Miura, Hiromichi, 2021. "A systematic approach to estimate an inter-unit common-cause failure probability," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Jang, Seunghyun & Jae, Moosung, 2020. "A development of methodology for assessing the inter-unit common cause failure in multi-unit PSA model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Zhang, Sai & Du, Mengyu & Tong, Jiejuan & Li, Yan-Fu, 2019. "Multi-objective optimization of maintenance program in multi-unit nuclear power plant sites," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 532-548.
    11. Mandelli, D. & Parisi, C. & Alfonsi, A. & Maljovec, D. & Boring, R. & Ewing, S. & St Germain, S. & Smith, C. & Rabiti, C. & Rasmussen, M., 2019. "Multi-unit dynamic PRA," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 303-317.
    12. Jin, Kyungho & Hwang, Yujeong & Heo, Gyunyoung, 2021. "Development of Dependence Indexes for Multi-Unit Risk Assessment and its Estimation Using Copula," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2019. "Multi-unit risk aggregation with consideration of uncertainty and bias in risk metrics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 473-482.
    14. Woo Sik Jung, 2021. "A Method to Avoid Underestimated Risks in Seismic SUPSA and MUPSA for Nuclear Power Plants Caused by Partitioning Events," Energies, MDPI, vol. 14(8), pages 1-13, April.
    15. Yoo, Heejong & Heo, Gyunyoung, 2023. "Analysis of site operating state contributions for multi-unit PSA with Korean NPP Sites," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Alanen, Jarmo & Linnosmaa, Joonas & Malm, Timo & Papakonstantinou, Nikolaos & Ahonen, Toni & Heikkilä, Eetu & Tiusanen, Risto, 2022. "Hybrid ontology for safety, security, and dependability risk assessments and Security Threat Analysis (STA) method for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Kim, Dong-San & Park, Jin Hee & Lim, Ho-Gon, 2020. "A pragmatic approach to modeling common cause failures in multi-unit PSA for nuclear power plant sites with a large number of units," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "Precursors and startling lessons: Statistical analysis of 1250 events with safety significance from the civil nuclear sector," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.