IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v235y2023ics0951832023001230.html
   My bibliography  Save this article

Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging

Author

Listed:
  • Lee, Dongjin
  • Kramer, Boris

Abstract

We propose novel methods for Conditional Value-at-Risk (CVaR) estimation for nonlinear systems under high-dimensional dependent random inputs. We develop a novel DD-GPCE-Kriging surrogate that merges dimensionally decomposed generalized polynomial chaos expansion and Kriging to accurately approximate nonlinear and nonsmooth random outputs. We use DD-GPCE-Kriging (1) for Monte Carlo simulation (MCS) and (2) within multifidelity importance sampling (MFIS). The MCS-based method samples from DD-GPCE-Kriging, which is efficient and accurate for high-dimensional dependent random inputs, yet introduces bias. Thus, we propose an MFIS-based method where DD-GPCE-Kriging determines the biasing density, from which we draw a few high-fidelity samples to provide an unbiased CVaR estimate. To accelerate the biasing density construction, we compute DD-GPCE-Kriging using a cheap-to-evaluate low-fidelity model. Numerical results for mathematical functions show that the MFIS-based method is more accurate than the MCS-based method when the output is nonsmooth. The scalability of the proposed methods and their applicability to complex engineering problems are demonstrated on a two-dimensional composite laminate with 28 (partly dependent) random inputs and a three-dimensional composite T-joint with 20 (partly dependent) random inputs. In the former, the proposed MFIS-based method achieves 104x speedup compared to standard MCS using the high-fidelity model, while accurately estimating CVaR with 1.15% error.

Suggested Citation

  • Lee, Dongjin & Kramer, Boris, 2023. "Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001230
    DOI: 10.1016/j.ress.2023.109208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stover, Oliver & Karve, Pranav & Mahadevan, Sankaran, 2023. "Reliability and risk metrics to assess operational adequacy and flexibility of power grids," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Jakeman, John D. & Kouri, Drew P. & Huerta, J. Gabriel, 2022. "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Bachoc, François, 2013. "Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 55-69.
    4. Wu, Jiaxin & Wang, Pingfeng, 2021. "Risk-averse optimization for resilience enhancement of complex engineering systems under uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Drew P. Kouri & Thomas M. Surowiec, 2020. "Epi-Regularization of Risk Measures," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 774-795, May.
    7. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    9. Jun-ya Gotoh & Stan Uryasev, 2017. "Support vector machines based on convex risk functions and general norms," Annals of Operations Research, Springer, vol. 249(1), pages 301-328, February.
    10. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.
    11. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    12. Francisco Bernal & Emmanuel Gobet & Jacques Printems, 2020. "Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 135-159, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    2. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    3. Justo Puerto & Moises Rodr'iguez-Madrena & Andrea Scozzari, 2019. "Location and portfolio selection problems: A unified framework," Papers 1907.07101, arXiv.org.
    4. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    5. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    6. Shangmei Zhao & Qing Lu & Liyan Han & Yong Liu & Fei Hu, 2015. "A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution," Annals of Operations Research, Springer, vol. 226(1), pages 727-739, March.
    7. Leili Javanmardi & Yuri Lawryshyn, 2016. "A new rank dependent utility approach to model risk averse preferences in portfolio optimization," Annals of Operations Research, Springer, vol. 237(1), pages 161-176, February.
    8. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    9. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    10. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    11. Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015, arXiv.org, revised Jan 2017.
    12. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    13. Betancourt, José & Bachoc, François & Klein, Thierry & Idier, Déborah & Pedreros, Rodrigo & Rohmer, Jérémy, 2020. "Gaussian process metamodeling of functional-input code for coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    14. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    15. Ruchika Sehgal & Aparna Mehra, 2019. "Enhanced indexing using weighted conditional value at risk," Annals of Operations Research, Springer, vol. 280(1), pages 211-240, September.
    16. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    17. Goel, Anubha & Sharma, Amita, 2020. "Mixed value-at-risk and its numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    18. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    19. Auffray, Yves & Barbillon, Pierre & Marin, Jean-Michel, 2014. "Bounding rare event probabilities in computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 153-166.
    20. Wlodzimierz Ogryczak & Michał Przyłuski & Tomasz Śliwiński, 2017. "Efficient optimization of the reward-risk ratio with polyhedral risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 625-653, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.