IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v208y2021ics0951832020309029.html
   My bibliography  Save this article

A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms

Author

Listed:
  • Simsekler, Mecit Can Emre
  • Rodrigues, Clarence
  • Qazi, Abroon
  • Ellahham, Samer
  • Ozonoff, Al

Abstract

Medical errors constitute a significant challenge affecting patient and staff safety in complex and dynamic healthcare systems. While various organizational factors may contribute to such errors, limited studies have addressed patient and staff safety issues simultaneously in the same study setting. To evaluate this, we conduct an exploratory analysis using two types of tree-based machine learning algorithms, random forests and gradient boosting, and the hospital-level aggregate staff experience survey data from UK hospitals. Based on staff views and priorities, the results from both algorithms suggest that “health and wellbeing†is the leading theme associated with the number of reported errors and near misses harming patient and staff safety. Specifically, “work-related stress†is the most important survey item associated with safety outcomes. With respect to prediction accuracy, both algorithms provide similar results with comparable values in error metrics. Based on the analytical results, healthcare risk managers and decision-makers can develop and implement policies and practices that address staff experience and prioritize resources effectively to improve patient and staff safety.

Suggested Citation

  • Simsekler, Mecit Can Emre & Rodrigues, Clarence & Qazi, Abroon & Ellahham, Samer & Ozonoff, Al, 2021. "A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:reensy:v:208:y:2021:i:c:s0951832020309029
    DOI: 10.1016/j.ress.2020.107416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020309029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marleen Smits & Cordula Wagner & Peter Spreeuwenberg & Danielle RM Timmermans & Gerrit van der Wal & Peter P Groenewegen, 2012. "The role of patient safety culture in the causation of unintended events in hospitals," Journal of Clinical Nursing, John Wiley & Sons, vol. 21(23-24), pages 3392-3401, December.
    2. Sujan, Mark, 2015. "An organisation without a memory: A qualitative study of hospital staff perceptions on reporting and organisational learning for patient safety," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 45-52.
    3. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    4. Worrell, Clarence & Luangkesorn, Louis & Haight, Joel & Congedo, Thomas, 2019. "Machine learning of fire hazard model simulations for use in probabilistic safety assessments at nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 128-142.
    5. Xu, Zhaoyi & Saleh, Joseph Homer & Subagia, Rachmat, 2020. "Machine learning for helicopter accident analysis using supervised classification: Inference, prediction, and implications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Hernandez-Perdomo, Elvis & Guney, Yilmaz & Rocco, Claudio M., 2019. "A reliability model for assessing corporate governance using machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 220-231.
    7. Stern, R.E. & Song, J. & Work, D.B., 2017. "Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 1-9.
    8. Antoniadis, Anestis & Lambert-Lacroix, Sophie & Poggi, Jean-Michel, 2021. "Random forests for global sensitivity analysis: A selective review," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    9. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    10. Sujan, Mark A. & Habli, Ibrahim & Kelly, Tim P. & Gühnemann, Astrid & Pozzi, Simone & Johnson, Christopher W., 2017. "How can health care organisations make and justify decisions about risk reduction? Lessons from a cross-industry review and a health care stakeholder consensus development process," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 1-11.
    11. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Sujan, Mark A., 2012. "A novel tool for organisational learning and its impact on safety culture in a hospital dispensary," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 21-34.
    14. Aremu, Oluseun Omotola & Hyland-Wood, David & McAree, Peter Ross, 2020. "A machine learning approach to circumventing the curse of dimensionality in discontinuous time series machine data," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    15. Annamaria Bagnasco & Laura Tibaldi & Paola Chirone & Clara Chiaranda & Maria Stella Panzone & Domenico Tangolo & Giuseppe Aleo & Luciana Lazzarino & Loredana Sasso, 2011. "Patient safety culture: an Italian experience," Journal of Clinical Nursing, John Wiley & Sons, vol. 20(7‐8), pages 1188-1195, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. de Araujo, Matheus Soares & da Silva, Leandro Dias & Sobrinho, Ã lvaro & Cunha, Paulo & Montecchi, Leonardo, 2022. "Reliability analysis of multi-parameter monitoring systems for Intensive Care Units," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Mahmoud, Hussam & Kirsch, Thomas & O'Neil, Dan & Anderson, Shelby, 2023. "The resilience of health care systems following major disruptive events: Current practice and a path forward," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Fan, Xudong & Zhang, Xijin & Yu, Xiong Bill, 2023. "Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Hernandez-Perdomo, Elvis & Guney, Yilmaz & Rocco, Claudio M., 2019. "A reliability model for assessing corporate governance using machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 220-231.
    3. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Sujan, Mark A. & Embrey, David & Huang, Huayi, 2020. "On the application of Human Reliability Analysis in healthcare: Opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    5. Patriarca, Riccardo & Bergström, Johan & Di Gravio, Giulio, 2017. "Defining the functional resonance analysis space: Combining Abstraction Hierarchy and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 34-46.
    6. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. de Araujo, Matheus Soares & da Silva, Leandro Dias & Sobrinho, Ã lvaro & Cunha, Paulo & Montecchi, Leonardo, 2022. "Reliability analysis of multi-parameter monitoring systems for Intensive Care Units," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    10. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    11. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    12. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    13. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    14. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    15. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    16. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    17. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    18. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    20. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:208:y:2021:i:c:s0951832020309029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.