IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v194y2020ics0951832017310256.html
   My bibliography  Save this article

On the application of Human Reliability Analysis in healthcare: Opportunities and challenges

Author

Listed:
  • Sujan, Mark A.
  • Embrey, David
  • Huang, Huayi

Abstract

Safety in healthcare is a relatively recent field, but has received considerable attention over the past 15 years. Healthcare organisations have been encouraged to learn from safety management practices in other industries. In this paper we analyse opportunities and challenges for the application of Human Reliability Analysis (HRA) in healthcare. We consider the poor levels of reliability of many healthcare processes, performance variability, the absence of regulatory frameworks that incentivise proactive risk management, and the unique role of the patient. We conclude that HRA could provide a useful framework for the analysis and reduction of risk in healthcare, but techniques might have to be adapted and applied with due consideration of the specifics of the cultural and regulatory context of this domain. This includes clinical engagement with and ownership of the HRA process, greater focus on rigorous evaluation of cost-effectiveness of HRA techniques, and active involvement of patients.

Suggested Citation

  • Sujan, Mark A. & Embrey, David & Huang, Huayi, 2020. "On the application of Human Reliability Analysis in healthcare: Opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:reensy:v:194:y:2020:i:c:s0951832017310256
    DOI: 10.1016/j.ress.2018.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017310256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sujan, Mark & Spurgeon, Peter & Cooke, Matthew & Weale, Andy & Debenham, Philip & Cross, Steve, 2015. "The development of safety cases for healthcare services: Practical experiences, opportunities and challenges," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 200-207.
    2. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    3. Sujan, Mark & Spurgeon, Peter & Cooke, Matthew, 2015. "The role of dynamic trade-offs in creating safety—A qualitative study of handover across care boundaries in emergency care," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 54-62.
    4. Sujan, Mark, 2015. "An organisation without a memory: A qualitative study of hospital staff perceptions on reporting and organisational learning for patient safety," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 45-52.
    5. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1041-1060.
    6. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    7. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    8. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    9. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 997-1013.
    10. Sujan, Mark A. & Habli, Ibrahim & Kelly, Tim P. & Gühnemann, Astrid & Pozzi, Simone & Johnson, Christopher W., 2017. "How can health care organisations make and justify decisions about risk reduction? Lessons from a cross-industry review and a health care stakeholder consensus development process," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 1-11.
    11. Sujan, Mark A., 2012. "A novel tool for organisational learning and its impact on safety culture in a hospital dispensary," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 21-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    3. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    4. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    5. Su Han & Tengfei Wang & Jiaqi Chen & Ying Wang & Bo Zhu & Yiqi Zhou, 2021. "Towards the Human–Machine Interaction: Strategies, Design, and Human Reliability Assessment of Crews’ Response to Daily Cargo Ship Navigation Tasks," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    6. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    7. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    8. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    9. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    11. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    13. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Luca Podofillini & Vinh Dang & Enrico Zio & Piero Baraldi & Massimo Librizzi, 2010. "Using Expert Models in Human Reliability Analysis—A Dependence Assessment Method Based on Fuzzy Logic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1277-1297, August.
    15. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    16. Su, Xiaoyan & Mahadevan, Sankaran & Xu, Peida & Deng, Yong, 2014. "Inclusion of task dependence in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 41-55.
    17. Parhizkar, Tarannom & Utne, Ingrid Bouwer & Vinnem, Jan Erik & Mosleh, Ali, 2021. "Supervised dynamic probabilistic risk assessment of complex systems, part 2: Application to risk-informed decision making, practice and results," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    19. Hogenboom, Sandra & Parhizkar, Tarannom & Vinnem, Jan Erik, 2021. "Temporal decision-making factors in risk analyses of dynamic positioning operations," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:194:y:2020:i:c:s0951832017310256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.