IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005574.html
   My bibliography  Save this article

A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging

Author

Listed:
  • Wang, Tianzhe
  • Chen, Zequan
  • Li, Guofa
  • He, Jialong
  • Liu, Chao
  • Du, Xuejiao

Abstract

In structural reliability analysis, Kriging-based adaptive analysis approaches considerably improve the analysis's efficiency by utilizing proper learning strategies. However, the time cost of building a Kriging model may become unacceptable when input spaces have high dimensions. This study proposes a novel method to tackle this difficulty. The basic idea of the proposed method is to implement the adaptive analysis process in the low-dimensional space that activity scores have identified. To determine the activity scores of variables, the active subspace method is implemented. Then, the proposed adaptive analysis method based on the interval squeezing method (ISM) is applied to the suggested low-dimensional space. ISM is designed to improve the accuracy of failure probability with cognitive uncertainty by squeezing its interval. Considering the difficulties associated with applying ISM directly, two variants of ISM are developed: the sequential interval squeezing method (sISM) and parallel interval squeezing method (pISM). Finally, five typical high-dimensional examples (i.e., three numerical and two engineering examples) are investigated to verify the performance of the proposed method. The results indicate that the proposed method can maintain satisfactory accuracy and efficiency.

Suggested Citation

  • Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005574
    DOI: 10.1016/j.ress.2023.109643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    2. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    3. Cai, Wei & Zhao, Jingyi & Zhu, Ming, 2020. "A real time methodology of cluster-system theory-based reliability estimation using k-means clustering," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Zuhal, Lavi Rizki & Faza, Ghifari Adam & Palar, Pramudita Satria & Liem, Rhea Patricia, 2021. "On dimensionality reduction via partial least squares for Kriging-based reliability analysis with active learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Pan, Qiujing & Dias, Daniel, 2017. "Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 484-493.
    7. Jiang, Zhong-ming & Feng, De-Cheng & Zhou, Hao & Tao, Wei-Feng, 2021. "A recursive dimension-reduction method for high-dimensional reliability analysis with rare failure event," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Hawchar, Lara & El Soueidy, Charbel-Pierre & Schoefs, Franck, 2017. "Principal component analysis and polynomial chaos expansion for time-variant reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 406-416.
    9. Constantine, Paul G. & Diaz, Paul, 2017. "Global sensitivity metrics from active subspaces," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 1-13.
    10. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Shields, Michael D. & Zhang, Jiaxin, 2016. "The generalization of Latin hypercube sampling," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 96-108.
    12. Chen, Zequan & Li, Guofa & He, Jialong & Yang, Zhaojun & Wang, Jili, 2022. "A new parallel adaptive structural reliability analysis method based on importance sampling and K-medoids clustering," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    14. Teixeira, Rui & Nogal, Maria & O’Connor, Alan & Martinez-Pastor, Beatriz, 2020. "Reliability assessment with density scanned adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Xu, Jun & Kong, Fan, 2018. "A new unequal-weighted sampling method for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 94-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buchwald, J. & Kolditz, O. & Nagel, T., 2024. "Design-of-Experiment (DoE) based history matching for probabilistic integrity analysis—A case study of the FE-experiment at Mont Terri," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    3. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Li, Guofa & Wang, Tianzhe & Chen, Zequan & He, Jialong & Wang, Xiaoye & Du, Xuejiao, 2023. "RBIK-SS: A parallel adaptive structural reliability analysis method for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. Chen, Zequan & Li, Guofa & He, Jialong & Yang, Zhaojun & Wang, Jili, 2022. "Adaptive structural reliability analysis method based on confidence interval squeezing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Dang, Chao & Xu, Jun, 2020. "Unified reliability assessment for problems with low- to high-dimensional random inputs using the Laplace transform and a mixture distribution," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Li, Bingyi & Jia, Xiang & Long, Jiahui, 2024. "AK–TSAGL: A two-stage hybrid algorithm combining global exploration and local exploitation based on active learning for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    9. Chen, Zequan & He, Jialong & Li, Guofa & Yang, Zhaojun & Wang, Tianzhe & Du, Xuejiao, 2024. "Fast convergence strategy for adaptive structural reliability analysis based on kriging believer criterion and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Cao, Runan & Sun, Zhili & Wang, Jian & Guo, Fanyi, 2022. "A single-loop reliability analysis strategy for time-dependent problems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. He, Wanxin & Wang, Yiyuan & Li, Gang & Zhou, Jinhang, 2024. "A novel maximum entropy method based on the B-spline theory and the low-discrepancy sequence for complex probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Braga, Joaquim A.P. & Andrade, António R., 2021. "Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Ameryan, Ala & Ghalehnovi, Mansour & Rashki, Mohsen, 2022. "AK-SESC: a novel reliability procedure based on the integration of active learning kriging and sequential space conversion method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Keshtegar, Behrooz & Kisi, Ozgur, 2018. "RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 49-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.