IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v236y2023ics0951832023000030.html
   My bibliography  Save this article

Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks

Author

Listed:
  • Fan, Xudong
  • Zhang, Xijin
  • Yu, Xiong Bill

Abstract

Predicting the time-dependent pipe failure rate of the water distribution networks (WDNs) is important for planning its renewal budget but also challenging due to the complex factors involved. The recent development of machine learning techniques provides a novel approach for accurate failure rate prediction based on historical data. However, the inherited randomness and uncertainty of water pipe failures and machine learning algorithms are often ignored in the training and prediction process. This article develops an uncertainty quantification framework for deep learning-based WDN system-wide failure rate prediction. The framework integrates a probabilistic long short-term memory (LSTM) model with a Monte Carlo method. The historical climate data and WDN pipe maintenance data over the past 35 years for Cuyahoga County, USA, are used to illustrate this deep-learning model-based uncertainty quantification framework in this study. A statistical time series regression model, ARIMAX, is used as a comparison benchmark. The results show that the LSTM model outperforms the ARIMAX model in prediction accuracy in most years by considering the uncertainties. Besides, the uncertainty range of the LSTM model prediction is 50% of that of the ARIMAX model. The results also identified the major contributing factors to the uncertainties of LSTM machine learning model prediction. The proposed uncertainty framework features excellent extensibility and can be adapted to quantify uncertainties with other types of machine learning models.

Suggested Citation

  • Fan, Xudong & Zhang, Xijin & Yu, Xiong Bill, 2023. "Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023000030
    DOI: 10.1016/j.ress.2023.109088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos-Salgado, Cristóbal & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo & Onieva, Luis, 2022. "A comprehensive framework to efficiently plan short and long-term investments in water supply and sewer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Yu, Jin-Zhu & Whitman, Mackenzie & Kermanshah, Amirhassan & Baroud, Hiba, 2021. "A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: A case study of water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Iannacone, Leandro & Sharma, Neetesh & Tabandeh, Armin & Gardoni, Paolo, 2022. "Modeling Time-varying Reliability and Resilience of Deteriorating Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Chen, Thomas Ying-Jeh & Guikema, Seth David, 2020. "Prediction of water main failures with the spatial clustering of breaks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Robles-Velasco, Alicia & Cortés, Pablo & Muñuzuri, Jesús & Onieva, Luis, 2020. "Prediction of pipe failures in water supply networks using logistic regression and support vector classification," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Jakub Żywiec & Izabela Piegdoń & Barbara Tchórzewska-Cieślak, 2019. "Failure Analysis of the Water Supply Network in the Aspect of Climate Changes on the Example of the Central and Eastern Europe Region," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    8. Guidotti, Roberto & Gardoni, Paolo & Rosenheim, Nathanael, 2019. "Integration of physical infrastructure and social systems in communities’ reliability and resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 476-492.
    9. Simsekler, Mecit Can Emre & Rodrigues, Clarence & Qazi, Abroon & Ellahham, Samer & Ozonoff, Al, 2021. "A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Tiedmann, Helena R. & Faust, Kasey M. & Sela, Lina, 2024. "Looking beyond individual failures: A system-wide assessment of water infrastructure resilience to extreme events," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Omar Abdulah Shrrat Omar, 2023. "Evaluation of Pipe Materials in Water System Networks Using the Theory of Advanced Multi-Criteria Analysis," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    4. Daulat, Shamsuddin & Rokstad, Marius Møller & Bruaset, Stian & Langeveld, Jeroen & Tscheikner-Gratl, Franz, 2024. "Evaluating the generalizability and transferability of water distribution deterioration models," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Guan, Xuefei, 2024. "Sparse moment quadrature for uncertainty modeling and quantification," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daulat, Shamsuddin & Rokstad, Marius Møller & Bruaset, Stian & Langeveld, Jeroen & Tscheikner-Gratl, Franz, 2024. "Evaluating the generalizability and transferability of water distribution deterioration models," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Jia, Rui & Du, Kun & Song, Zhigang & Xu, Wei & Zheng, Feifei, 2024. "Scenario reduction-based simulation method for efficient serviceability assessment of earthquake-damaged water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Rifaai, Talha M. & Abokifa, Ahmed A. & Sela, Lina, 2022. "Integrated approach for pipe failure prediction and condition scoring in water infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Mehryar, Mehdi & Hafezalkotob, Ashkan & Azizi, Amir & Sobhani, Farzad Movahedi, 2023. "Dynamic zoning of the network using cooperative transmission and maintenance planning: A solution for sustainability of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Nocera, Fabrizio & Contento, Alessandro & Gardoni, Paolo, 2024. "Risk analysis of supply chains: The role of supporting structures and infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Ramos-Salgado, Cristóbal & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo & Onieva, Luis, 2021. "A decision support system to design water supply and sewer pipes replacement intervention programs," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Wu, Yipeng & Chen, Zhilong & Dang, Junhu & Chen, Yicun & Zhao, Xudong & Zha, Lvying, 2022. "Allocation of defensive and restorative resources in electric power system against consecutive multi-target attacks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Tabandeh, Armin & Sharma, Neetesh & Gardoni, Paolo, 2022. "Uncertainty propagation in risk and resilience analysis of hierarchical systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    12. Ramos-Salgado, Cristóbal & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo & Onieva, Luis, 2022. "A comprehensive framework to efficiently plan short and long-term investments in water supply and sewer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Tiedmann, Helena R. & Faust, Kasey M. & Sela, Lina, 2024. "Looking beyond individual failures: A system-wide assessment of water infrastructure resilience to extreme events," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Shen, Yang & Yang, Zhen & Guo, Li & Zhao, Xiaozhe & Duan, Yao, 2024. "Scenario mapping for critical infrastructure failure under typhoon rainfall: A dependency and causality approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    16. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Wu, Jason & Baker, Jack W., 2020. "Statistical learning techniques for the estimation of lifeline network performance and retrofit selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    19. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    20. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023000030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.