IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832019313262.html
   My bibliography  Save this article

Multi-variate and single-variable flood fragility and loss approaches for buildings

Author

Listed:
  • Nofal, Omar M.
  • van de Lindt, John W.
  • Do, Trung Q.

Abstract

Propagating uncertainties in flood damage models is a critical step towards a risk-informed decision methodology that is based on quantitative assessment. Flood-related data scarcity and the use of deterministic models present challenges when seeking to include uncertainties in flood damage modeling. In this paper, a single-variable and multi-variate component-based flood fragility method is proposed. The method uses expert-based data derived from online sources that are applied within a Monte Carlo framework to divide the building into independent components and then assigns these components to five predefined damage states that describe the building damage as a whole. Using a series of Monte Carlo simulations, uncertainties in flood depth and flood duration that result in each damage level for each component were propagated. Their damage is then characterized using component fragility functions to be used to develop total building fragility and loss functions. The resulting fragilities can be used as a probabilistic vulnerability function to be assigned to a real community based on building archetype and occupancy. The ability to develop flood fragility curves for buildings without the need for empirical field data is the primary contribution of this work.

Suggested Citation

  • Nofal, Omar M. & van de Lindt, John W. & Do, Trung Q., 2020. "Multi-variate and single-variable flood fragility and loss approaches for buildings," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832019313262
    DOI: 10.1016/j.ress.2020.106971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019313262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosqvist, Tony & Molarius, Riitta & Virta, Hanna & Perrels, Adriaan, 2013. "Event tree analysis for flood protection—An exploratory study in Finland," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 1-7.
    2. Dupuits, E.J.C. & Klerk, W.J. & Schweckendiek, T. & de Bruijn, K.M., 2019. "Impact of including interdependencies between multiple riverine flood defences on the economically optimal flood safety levels," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Aimilia Pistrika & Sebastiaan Jonkman, 2010. "Damage to residential buildings due to flooding of New Orleans after hurricane Katrina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 413-434, August.
    4. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    5. R. De Risi & F. Jalayer & F. De Paola & I. Iervolino & M. Giugni & M. Topa & E. Mbuya & A. Kyessi & G. Manfredi & P. Gasparini, 2013. "Flood risk assessment for informal settlements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1003-1032, October.
    6. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    7. Delenne, C. & Cappelaere, B. & Guinot, V., 2012. "Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 171-183.
    8. van Manen, Sipke E. & Brinkhuis, Martine, 2005. "Quantitative flood risk assessment for Polders," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 229-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oluwatofunmi Deborah Aribisala & Sang-Guk Yum & Manik Das Adhikari & Moon-Soo Song, 2022. "Flood Damage Assessment: A Review of Microscale Methodologies for Residential Buildings," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    2. Junqi Li & Haohan Zhang & Xiaoran Zhang & Wenliang Wang, 2023. "Establishment and Application of a Specialized Physical Examination Indicator System for Urban Waterlogging Risk in China," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. Chen, Yingzhen & Zhao, Qiuhong & Huang, Kai & Xi, Xunzhuo, 2022. "A Bi-objective optimization model for contract design of humanitarian relief goods procurement considering extreme disasters," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    4. Wu, Jingyi & Yu, Yang & Cheng, Siyuan & Li, Zhenmian & Yu, Jianxing, 2022. "Probabilistic multilevel robustness assessment framework for a TLP under mooring failure considering uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Rongen, G. & Morales-Nápoles, O. & Kok, M., 2022. "Expert judgment-based reliability analysis of the Dutch flood defense system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Margherita Righini & Ignacio Gatti & Andrea Taramelli & Marcello Arosio & Emiliana Valentini & Serena Sapio & Emma Schiavon, 2024. "Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy," Land, MDPI, vol. 13(2), pages 1-26, January.
    7. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Argyroudis, Sotirios A. & Mitoulis, Stergios Aristoteles, 2021. "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Wu, Jingyi & Yu, Yang & Jin, Zihang & Zhang, Wenhao, 2024. "Multi-dimensional resilience assessment framework of offshore structure under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Cavalieri, Francesco & Franchin, Paolo & Giovinazzi, Sonia, 2023. "Multi-hazard assessment of increased flooding hazard due to earthquake-induced damage to the natural drainage system," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    13. Hope Ameh & Lidia Badarnah & Jessica Lamond, 2024. "Amphibious Architecture: A Biomimetic Design Approach to Flood Resilience," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    14. Fahad, Md Golam Rabbani & Nazari, Rouzbeh & Motamedi, M.H. & Karimi, Maryam, 2022. "A Decision-Making Framework Integrating Fluid and Solid Systems to Assess Resilience of Coastal Communities Experiencing Extreme Storm Events," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Yu & Liu, Pan & Zhang, Jun & Liu, Dedi & Zhang, Xiaoqi & Zhang, Xiaojing, 2020. "Considering different streamflow forecast horizons in the quantitative flood risk analysis for a multi-reservoir system," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Neslihan Beden & Asli Ulke Keskin, 2021. "Estimation of the local financial costs of flood damage with different methodologies in Unye (Ordu), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2835-2854, September.
    3. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    4. Eduardo Martínez-Gomariz & Edwar Forero-Ortiz & María Guerrero-Hidalga & Salvador Castán & Manuel Gómez, 2020. "Flood Depth‒Damage Curves for Spanish Urban Areas," Sustainability, MDPI, vol. 12(7), pages 1-25, March.
    5. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    6. Pini Wijayanti & Xueqin Zhu & Petra Hellegers & Yus Budiyono & Ekko C. van Ierland, 2017. "Estimation of river flood damages in Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1059-1079, April.
    7. Enes Yildirim & Ibrahim Demir, 2019. "An integrated web framework for HAZUS-MH flood loss estimation analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 275-286, October.
    8. Santiago Gaitan & Marie-claire ten Veldhuis & Nick Giesen, 2015. "Spatial Distribution of Flood Incidents Along Urban Overland Flow-Paths," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3387-3399, July.
    9. Rocco Custer & Kazuyoshi Nishijima, 2015. "Flood vulnerability assessment of residential buildings by explicit damage process modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 461-496, August.
    10. Oluwatofunmi Deborah Aribisala & Sang-Guk Yum & Manik Das Adhikari & Moon-Soo Song, 2022. "Flood Damage Assessment: A Review of Microscale Methodologies for Residential Buildings," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    11. H. Moel & B. Jongman & H. Kreibich & B. Merz & E. Penning-Rowsell & P. Ward, 2015. "Flood risk assessments at different spatial scales," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 865-890, August.
    12. Zongzhi Wang & Jingjing Wu & Liang Cheng & Kelin Liu & Yi-Ming Wei, 2018. "Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 803-822, September.
    13. Borowska-Stefańska, Marta & Kobojek, Sławomir & Kowalski, Michał & Lewicki, Marek & Tomalski, Przemysław & Wiśniewski, Szymon, 2021. "Changes in the spatial development of flood hazard areas in Poland between 1990 and 2018 in the light of legal conditions," Land Use Policy, Elsevier, vol. 102(C).
    14. R. De Risi & F. Jalayer & F. De Paola & I. Iervolino & M. Giugni & M. Topa & E. Mbuya & A. Kyessi & G. Manfredi & P. Gasparini, 2013. "Flood risk assessment for informal settlements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1003-1032, October.
    15. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    16. Giuliano Di Baldassarre & Attilio Castellarin & Alberto Montanari & Armando Brath, 2009. "Probability-weighted hazard maps for comparing different flood risk management strategies: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 479-496, September.
    17. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    18. David-Jan Jansen, 2023. "Homeowners and flood risk: A disconnect between awareness and actions?," Working Papers 791, DNB.
    19. Zoran Vojinovic & Michael Hammond & Daria Golub & Sianee Hirunsalee & Sutat Weesakul & Vorawit Meesuk & Neiler Medina & Arlex Sanchez & Sisira Kumara & Michael Abbott, 2016. "Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 589-616, March.
    20. Non Okumura & Sebastiaan N. Jonkman & Miguel Esteban & Bas Hofland & Tomoya Shibayama, 2017. "A method for tsunami risk assessment: a case study for Kamakura, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1451-1472, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832019313262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.