IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp614-623.html
   My bibliography  Save this article

The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties

Author

Listed:
  • Ghamlouch, Houda
  • Fouladirad, Mitra
  • Grall, Antoine

Abstract

Preventive maintenance planning is an important problem for the handling of energy production systems with high down time costs. Throughout the last decade different maintenance strategies have been developed and optimized in order to minimize operational and maintenance costs whilst conserving and improving the system reliability and productivity. Preventive maintenance strategies are usually based on the monitoring and the prediction of the system behavior and its deterioration process. However, some industrial systems may be operating under a dynamic environment and/or variable working conditions. In this case both the deterioration and the production processes may not be deterministic and incorporate different types of uncertainties. In this paper, we consider the case of a preventive maintenance strategy for a production system subject to uncertainty. For this system, a decision-making procedure for condition-based maintenance planning is proposed. In order to consider uncertainty in production and deterioration processes, these latter are modeled by non-monotonic stochastic processes. The modeling of deterioration processes by means of jump-diffusion stochastic processes has been proposed in our previous work. In this paper, a decision-making approach for preventive maintenance strategies is proposed. Knowing the remaining useful life of a system, a simulation-based real options analysis is used in order to determine the best date to maintain. Considering a case study of a wind turbine with PHM structure, the decision-making approach is described and tested through an empirical example.

Suggested Citation

  • Ghamlouch, Houda & Fouladirad, Mitra & Grall, Antoine, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 614-623.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:614-623
    DOI: 10.1016/j.ress.2017.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016309188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
    2. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    3. Widén, Joakim & Wäckelgård, Ewa, 2010. "A high-resolution stochastic model of domestic activity patterns and electricity demand," Applied Energy, Elsevier, vol. 87(6), pages 1880-1892, June.
    4. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    5. van Donselaar, K. & van den Nieuwenhof, J. & Visschers, J., 2000. "The impact of material coordination concepts on planning stability in supply chains," International Journal of Production Economics, Elsevier, vol. 68(2), pages 169-176, November.
    6. Pritchard, Geoffrey, 2015. "Stochastic inflow modeling for hydropower scheduling problems," European Journal of Operational Research, Elsevier, vol. 246(2), pages 496-504.
    7. van Noortwijk, J.M. & van der Weide, J.A.M. & Kallen, M.J. & Pandey, M.D., 2007. "Gamma processes and peaks-over-threshold distributions for time-dependent reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1651-1658.
    8. Jin, Xiaoning & Li, Lin & Ni, Jun, 2009. "Option model for joint production and preventive maintenance system," International Journal of Production Economics, Elsevier, vol. 119(2), pages 347-353, June.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Stephen C. Graves, 2011. "Uncertainty and Production Planning," International Series in Operations Research & Management Science, in: Karl G. Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 83-101, Springer.
    11. Suleyman Karabuk & S. David Wu, 2003. "Coordinating Strategic Capacity Planning in the Semiconductor Industry," Operations Research, INFORMS, vol. 51(6), pages 839-849, December.
    12. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    13. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    14. Mula, J. & Poler, R. & Garcia-Sabater, J.P. & Lario, F.C., 2006. "Models for production planning under uncertainty: A review," International Journal of Production Economics, Elsevier, vol. 103(1), pages 271-285, September.
    15. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azimpoor, Samareh & Taghipour, Sharareh & Farmanesh, Babak & Sharifi, Mani, 2022. "Joint Planning of Production and Inspection of Parallel Machines with Two-phase of Failure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    6. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    8. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Jichuan Kang & Zihao Wang & C. Guedes Soares, 2020. "Condition-Based Maintenance for Offshore Wind Turbines Based on Support Vector Machine," Energies, MDPI, vol. 13(14), pages 1-17, July.
    10. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Ahmed Raza & Vladimir Ulansky, 2019. "Optimal Preventive Maintenance of Wind Turbine Components with Imperfect Continuous Condition Monitoring," Energies, MDPI, vol. 12(19), pages 1-24, October.
    12. Chen, Zhiyuan & Wang, Feng & Wang, Tieli & He, Rulin & Hu, Jieli & Li, Li & Luo, Ying & Qin, Yingling & Wang, Dingliang, 2024. "A real options approach to renewable energy module end-of-life decisions under multiple uncertainties: Application to PV and wind in China," Renewable Energy, Elsevier, vol. 226(C).
    13. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houda Ghamlouch & Mitra Fouladirad & Antoine Grall, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Post-Print hal-02365402, HAL.
    2. Hui Chen & Jie Chen & Yangyang Lai & Xiaoqi Yu & Lijun Shang & Rui Peng & Baoliang Liu, 2024. "Discrete Random Renewable Replacements after the Expiration of Collaborative Preventive Maintenance Warranty," Mathematics, MDPI, vol. 12(18), pages 1-21, September.
    3. Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
    4. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    5. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    6. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    7. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    8. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    10. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    11. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    12. Sivadasan, Suja & Smart, Janet & Huaccho Huatuco, Luisa & Calinescu, Anisoara, 2013. "Reducing schedule instability by identifying and omitting complexity-adding information flows at the supplier–customer interface," International Journal of Production Economics, Elsevier, vol. 145(1), pages 253-262.
    13. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    14. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Chengye Ma & Yongjun Du & Lijun Shang & Li Yang & Kaiye Gao, 2023. "Random Maintenance Strategy Modeling of Warranted Products with Reliability Heterogeneity," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    16. Mi-Hsiu Chiang & Chang-Yi Li & Son-Nan Chen, 2016. "Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 459-482, April.
    17. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    18. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. Xinglin Yang, 2018. "Good jump, bad jump, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1097-1125, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:614-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.