IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v182y2019icp233-249.html
   My bibliography  Save this article

Development of statistical models for improving efficiency of emergency evacuation in areas with vulnerable population

Author

Listed:
  • Dulebenets, Maxim A.
  • Abioye, Olumide F.
  • Ozguven, Eren Erman
  • Moses, Ren
  • Boot, Walter R.
  • Sando, Thobias

Abstract

Different parts of the world are characterized by frequent occurrences of natural hazards. As such, evacuation planning is an essential part of the natural hazard preparedness, especially in hazard-prone areas. Numerous research efforts have been directed towards improving the efficiency of the evacuation process. However, only a limited number of studies have specifically aimed to identify factors, influencing the driving ability of individuals under emergency evacuation and the occurrence of crashes along the evacuation routes. Furthermore, previous research efforts have focused on a relatively narrow range of factors (primarily driver and traffic flow characteristics). This study aims to fill the existing gap in the state-of-the-art by investigating the effects of a wide range of different factors (including driver characteristics, evacuation route characteristics, driving conditions, and traffic characteristics) on the major driving performance indicators under emergency evacuation. The considered driving performance indicators include travel time, lane deviation, crash occurrence, collision speed, average acceleration pedal pressure, and average braking pedal pressure. A set of statistical models is developed to identify the most significant factors that influence the major driving performance indicators. These models are tested using the data collected from the driving simulator and participants with various socio-demographic characteristics. The results indicate that age, gender, visual disorders, number of lanes, and space headway may substantially impact the driving ability of individuals throughout the emergency evacuation process. Findings from this research can be incorporated within the existing transportation planning models to facilitate the natural hazard preparedness, ensure safety of evacuees, including vulnerable populations, and reduce or even prevent the occurrence of crashes along the evacuation routes.

Suggested Citation

  • Dulebenets, Maxim A. & Abioye, Olumide F. & Ozguven, Eren Erman & Moses, Ren & Boot, Walter R. & Sando, Thobias, 2019. "Development of statistical models for improving efficiency of emergency evacuation in areas with vulnerable population," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 233-249.
  • Handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:233-249
    DOI: 10.1016/j.ress.2018.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201830437X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    2. ., 2017. "Early 1990s: advanced countries crises," Chapters, in: Financial Crises, 1929 to the Present, Second Edition, chapter 5, pages 73-94, Edward Elgar Publishing.
    3. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    4. Jonkman, S.N. & Lentz, A. & Vrijling, J.K., 2010. "A general approach for the estimation of loss of life due to natural and technological disasters," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1123-1133.
    5. Eren Erman Ozguven & Mark W. Horner & Ayberk Kocatepe & Jean Michael Marcelin & Yassir Abdelrazig & Thobias Sando & Ren Moses, 2016. "Metadata-based Needs Assessment for Emergency Transportation Operations with a Focus on an Aging Population: A Case Study in Florida," Transport Reviews, Taylor & Francis Journals, vol. 36(3), pages 383-412, May.
    6. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    7. Dridi, Jemma & Nguyen, Anh D. M., 2017. "Inflation Convergence In East African Countries," MPRA Paper 80393, University Library of Munich, Germany.
    8. van Manen, Sipke E. & Brinkhuis, Martine, 2005. "Quantitative flood risk assessment for Polders," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 229-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiong Bao & Hanrun Tang & Yongjun Shen, 2021. "Driving Behavior Based Relative Risk Evaluation Using a Nonparametric Optimization Method," IJERPH, MDPI, vol. 18(23), pages 1-15, November.
    2. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Ying Yao & Xiaohua Zhao & Hongji Du & Yunlong Zhang & Guohui Zhang & Jian Rong, 2019. "Classification of Fatigued and Drunk Driving Based on Decision Tree Methods: A Simulator Study," IJERPH, MDPI, vol. 16(11), pages 1-17, May.
    4. Juan F. Dols & Jaime Molina & F. Javier Camacho-Torregrosa & David Llopis-Castelló & Alfredo García, 2021. "Development of Driving Simulation Scenarios Based on Building Information Modeling (BIM) for Road Safety Analysis," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    5. Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Abioye, Olumide F. & Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren & Boot, Walter R. & Sando, Thobias, 2020. "Assessing perceived driving difficulties under emergency evacuation for vulnerable population groups," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    9. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Teichmann, Dusan & Dorda, Michal & Sousek, Radovan, 2021. "Creation of preventive mass evacuation plan with the use of public transport," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katal, Fatemeh & Fazelpour, Farivar, 2018. "Multi-criteria evaluation and priority analysis of different types of existing power plants in Iran: An optimized energy planning system," Renewable Energy, Elsevier, vol. 120(C), pages 163-177.
    2. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Giuliano Di Baldassarre & Attilio Castellarin & Alberto Montanari & Armando Brath, 2009. "Probability-weighted hazard maps for comparing different flood risk management strategies: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 479-496, September.
    5. Khondoker Billah & Qasim Adegbite & Hatim O. Sharif & Samer Dessouky & Lauren Simcic, 2021. "Analysis of Intersection Traffic Safety in the City of San Antonio, 2013–2017," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    6. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    7. Bae, Bumjoon & Seo, Changbeom, 2022. "Do public-private partnerships help improve road safety? Finding empirical evidence using panel data models," Transport Policy, Elsevier, vol. 126(C), pages 336-342.
    8. Changxi Ma & Jibiao Zhou & Dong Yang, 2020. "Causation Analysis of Hazardous Material Road Transportation Accidents Based on the Ordered Logit Regression Model," IJERPH, MDPI, vol. 17(4), pages 1-25, February.
    9. Svetlana BAČKALIĆ & Dragan JOVANOVIĆ & Todor BAČKALIĆ & Boško MATOVIĆ & Miloš PLJAKIĆ, 2019. "The Application Of Reliability Reallocation Model In Traffic Safety Analysis On Rural Roads," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(1), pages 115-125, April.
    10. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    12. Renfei Wu & Xunjia Zheng & Yongneng Xu & Wei Wu & Guopeng Li & Qing Xu & Zhuming Nie, 2019. "Modified Driving Safety Field Based on Trajectory Prediction Model for Pedestrian–Vehicle Collision," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    13. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    14. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    15. Dereli, Mehmet Ali & Erdogan, Saffet, 2017. "A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 106-117.
    16. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    17. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    18. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    19. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    20. Petr Halámek & Radka Matuszková & Michal Radimský, 2021. "Modernisation of Regional Roads Evaluated Using Ex-Post CBA," Sustainability, MDPI, vol. 13(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:233-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.