IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021005391.html
   My bibliography  Save this article

Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data

Author

Listed:
  • Seites-Rundlett, William
  • Bashar, Mohammad Z.
  • Torres-Machi, Cristina
  • Corotis, Ross B.

Abstract

Despite the significant advancements in data collection technology and the increased use of automated data collection systems, pavement condition assessment mainly relies on ground-based monitoring. The increasing availability of low-cost sensors and remote sensing technologies provide opportunities to explore more efficient approaches. These data, however, are often characterized by high uncertainties. This study explores the application of Evidence Theory to incorporate highly uncertain sensor data. The capabilities of the proposed approach are assessed in a case study comparing the estimated pavement condition derived from the proposed Evidence Theory approach and the traditional approaches of Markov Deterioration Process and the Bayesian approach proposed in the Partially Observable Markov Decision Process. This paper also explores how to incorporate aspects such as reliability and conflict in the combination of multiple sensors data and discusses the impacts on the results of various parameters and methods in the application of Evidence Theory. The results show that the proposed Evidence Theory approach produces errors that are 44% lower than any of the other methods. The sensitivity analysis exploring different treatments of conflict and the introduction of reliability measures show the importance of an adequate calibration of Evidence Theory parameters in real life applications.

Suggested Citation

  • Seites-Rundlett, William & Bashar, Mohammad Z. & Torres-Machi, Cristina & Corotis, Ross B., 2022. "Combined evidence model to enhance pavement condition prediction from highly uncertain sensor data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005391
    DOI: 10.1016/j.ress.2021.108031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, Esteban Le Maitre & Desforges, Xavier & Archimède, Bernard, 2018. "Assessment method of the multicomponent systems future ability to achieve productive tasks from local prognoses," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 403-415.
    2. Samer Madanat & Moshe Ben-Akiva, 1994. "Optimal Inspection and Repair Policies for Infrastructure Facilities," Transportation Science, INFORMS, vol. 28(1), pages 55-62, February.
    3. repec:dau:papers:123456789/11069 is not listed on IDEAS
    4. Edward J. Sondik, 1978. "The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs," Operations Research, INFORMS, vol. 26(2), pages 282-304, April.
    5. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    6. Andrew Gelman & Christian P. Robert, 2013. ""Not Only Defended But Also Applied": The Perceived Absurdity of Bayesian Inference," The American Statistician, Taylor & Francis Journals, vol. 67(1), pages 1-5, February.
    7. Madanat, Samer, 1993. "Incorporating inspection decisions in pavement management," Transportation Research Part B: Methodological, Elsevier, vol. 27(6), pages 425-438, December.
    8. Christian P. Robert, 2010. "An Attempt at Reading Keynes's Treatise on Probability," Working Papers 2010-26, Center for Research in Economics and Statistics.
    9. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    10. Aven, T., 2011. "Interpretations of alternative uncertainty representations in a reliability and risk analysis context," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 353-360.
    11. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 202-213.
    12. Kamal Golabi & Ram B. Kulkarni & George B. Way, 1982. "A Statewide Pavement Management System," Interfaces, INFORMS, vol. 12(6), pages 5-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kıvanç, İpek & Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2022. "Maintenance policy analysis of the regenerative air heater system using factored POMDPs," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Memarzadeh, Milad & Pozzi, Matteo & Kolter, J. Zico, 2016. "Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 159-169.
    3. Lee, Jinwoo & Madanat, Samer, 2015. "A joint bottom-up solution methodology for system-level pavement rehabilitation and reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 106-122.
    4. Joaquim AP Braga & António R Andrade, 2019. "Optimizing maintenance decisions in railway wheelsets: A Markov decision process approach," Journal of Risk and Reliability, , vol. 233(2), pages 285-300, April.
    5. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    7. Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2017. "Performance analysis of an aggregation and disaggregation solution procedure to obtain a maintenance plan for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 652-662.
    8. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 202-213.
    9. Zhang, Le & Fu, Liangliang & Gu, Weihua & Ouyang, Yanfeng & Hu, Yaohua, 2017. "A general iterative approach for the system-level joint optimization of pavement maintenance, rehabilitation, and reconstruction planning," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 378-400.
    10. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    11. Xuejuan Liu & Wenbin Wang & Rui Peng & Fei Zhao, 2015. "A delay-time-based inspection model for parallel systems," Journal of Risk and Reliability, , vol. 229(6), pages 556-567, December.
    12. Williams, Byron K., 2009. "Markov decision processes in natural resources management: Observability and uncertainty," Ecological Modelling, Elsevier, vol. 220(6), pages 830-840.
    13. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    14. Yanling Chang & Alan Erera & Chelsea White, 2015. "Value of information for a leader–follower partially observed Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 129-153, December.
    15. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    16. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    17. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.
    18. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    19. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    20. Durango, Pablo L. & Madanat, Samer M., 2002. "Optimal maintenance and repair policies in infrastructure management under uncertain facility deterioration rates: an adaptive control approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 763-778, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021005391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.