IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v110y2013icp1-13.html
   My bibliography  Save this article

Online scenario labeling using a hidden Markov model for assessment of nuclear plant state

Author

Listed:
  • Zamalieva, Daniya
  • Yilmaz, Alper
  • Aldemir, Tunc

Abstract

By taking into account both aleatory and epistemic uncertainties within the same probabilistic framework, dynamic event trees (DETs) provide more comprehensive and systematic coverage of possible scenarios following an initiating event compared to conventional event trees. When DET generation algorithms are applied to complex realistic systems, extremely large amounts of data can be produced due to both the large number of scenarios generated following a single initiating event and the large number of data channels that represent these scenarios. In addition, the computational time required for the simulation of each scenario can be very large (e.g. about 24h of serial run simulation time for a 4h station blackout scenario). Since scenarios leading to system failure are more of interest, a method is proposed for online labeling of scenarios as failure or non-failure. The algorithm first trains a Hidden Markov Model, which represents the behavior of non-failure scenarios, using a training set from previous simulations. Then, the maximum likelihoods of sample failure and non-failure scenarios fitting this model are computed. These values are used to determine the timestamp at which the labeling of a certain scenario should be performed. Finally, during the succeeding timestamps, the likelihood of each scenario fitting the learned model is computed, and a dynamic thresholding based on the previously calculated likelihood values is applied. The scenarios whose likelihood is higher than the threshold are labeled as non-failure. The proposed algorithm can further delay the non-failure scenarios or discontinue them in order to redirect the computational resources toward the failure scenarios, and reduce computational time and complexity. Experiments using RELAP5/3D model of a fast reactor utilizing an Reactor Vessel Auxiliary Cooling System (RVACS) passive decay heat removal system and dynamic analysis of a station blackout (SBO) event show that the proposed method is capable of correctly labeling 100% of failure scenarios as failure and over 80% of non-failure scenarios as non-failure and provide significant simulation time savings.

Suggested Citation

  • Zamalieva, Daniya & Yilmaz, Alper & Aldemir, Tunc, 2013. "Online scenario labeling using a hidden Markov model for assessment of nuclear plant state," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 1-13.
  • Handle: RePEc:eee:reensy:v:110:y:2013:i:c:p:1-13
    DOI: 10.1016/j.ress.2012.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012001743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catalyurek, Umit & Rutt, Benjamin & Metzroth, Kyle & Hakobyan, Aram & Aldemir, Tunc & Denning, Richard & Dunagan, Sean & Kunsman, David, 2010. "Development of a code-agnostic computational infrastructure for the dynamic generation of accident progression event trees," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 278-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    3. Zamalieva, Daniya & Yilmaz, Alper & Aldemir, Tunc, 2013. "A probabilistic model for online scenario labeling in dynamic event tree generation," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 18-26.
    4. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Fort, A. & Mugnaini, M. & Vignoli, V., 2015. "Hidden Markov Models approach used for life parameters estimations," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 85-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Picoco, Claudia & Rychkov, Valentin & Aldemir, Tunc, 2020. "A framework for verifying Dynamic Probabilistic Risk Assessment models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Rahman, S. & Karanki, D.R. & Epiney, A. & Wicaksono, D. & Zerkak, O. & Dang, V.N., 2018. "Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 62-78.
    3. Karanki, Durga Rao & Dang, Vinh N., 2016. "Quantification of Dynamic Event Trees – A comparison with event trees for MLOCA scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 19-31.
    4. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    5. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Karanki, D.R. & Rahman, S. & Dang, V.N. & Zerkak, O., 2017. "Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 91-102.
    8. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    9. Pietro Turati & Nicola Pedroni & Enrico Zio, 2017. "An Adaptive Simulation Framework for the Exploration of Extreme and Unexpected Events in Dynamic Engineered Systems," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 147-159, January.
    10. Rebollo, M.J. & Queral, C. & Jimenez, G. & Gomez-Magan, J. & Meléndez, E. & Sanchez-Perea, M., 2016. "Evaluation of the offsite dose contribution to the global risk in a Steam Generator Tube Rupture scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 32-48.
    11. Su Han & Tengfei Wang & Jiaqi Chen & Ying Wang & Bo Zhu & Yiqi Zhou, 2021. "Towards the Human–Machine Interaction: Strategies, Design, and Human Reliability Assessment of Crews’ Response to Daily Cargo Ship Navigation Tasks," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    12. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Maidana, Renan G. & Parhizkar, Tarannom & Martin, Gabriel San & Utne, Ingrid B., 2024. "Dynamic probabilistic risk assessment with K-shortest-paths planning for generating discrete dynamic event trees," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Ibánez, L. & Hortal, J. & Queral, C. & Gómez-Magán, J. & Sánchez-Perea, M. & Fernández, I. & Meléndez, E. & Expósito, A. & Izquierdo, J.M. & Gil, J. & Marrao, H. & Villalba-Jabonero, E., 2016. "Application of the Integrated Safety Assessment methodology to safety margins. Dynamic Event Trees, Damage Domains and Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 170-193.
    15. Karanki, D.R. & Dang, V.N. & MacMillan, M.T. & Podofillini, L., 2018. "A comparison of dynamic event tree methods – Case study on a chemical batch reactor," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 542-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:110:y:2013:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.