IDEAS home Printed from https://ideas.repec.org/a/wsi/nmncxx/v15y2019i01ns1793005719500030.html
   My bibliography  Save this article

Structural Reliability Analysis with Inverse Credibility Distributions

Author

Listed:
  • Palash Dutta

    (Department of Mathematics, Dibrugarh University, Dibrugarh 786004, India)

Abstract

In structural reliability analysis, parameters of reliability analysis models are more often vague/imprecise or many times intuitively illustrated through linguistic expressions, so the conformist evaluation techniques cannot efficiently lever the vagueness and ambiguity exist in reliability parameters which fetch the problem of huge computationally complex and meagre accuracy. Keeping all these deficiencies in mind, this present paper proposes a novel structural reliability analysis technique through inverse credibility distributions with the intention to obtain the precision and efficiency of structural reliability. Finally, some structural reliability analysis problems are solved in this setting.

Suggested Citation

  • Palash Dutta, 2019. "Structural Reliability Analysis with Inverse Credibility Distributions," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 47-63, March.
  • Handle: RePEc:wsi:nmncxx:v:15:y:2019:i:01:n:s1793005719500030
    DOI: 10.1142/S1793005719500030
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S1793005719500030
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S1793005719500030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eldred, M.S. & Swiler, L.P. & Tang, G., 2011. "Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1092-1113.
    2. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Wang, Fan & Li, Heng, 2018. "System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 94-104.
    3. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    5. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    6. Li, Zai-Wei & Zhou, Yun-Lai & Liu, Xiao-Zhou & Abdel Wahab, Magd, 2023. "Service reliability assessment of ballastless track in high speed railway via improved response surface method," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
    8. Shengwen Yin & Keliang Jin & Yu Bai & Wei Zhou & Zhonggang Wang, 2023. "Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty," Mathematics, MDPI, vol. 11(5), pages 1-19, March.
    9. Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
    10. Rahman, S. & Karanki, D.R. & Epiney, A. & Wicaksono, D. & Zerkak, O. & Dang, V.N., 2018. "Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 62-78.
    11. Cai, Yu & Zhao, Wei & Wang, Xiaoping & Ou, Yanjun & Chen, Yangyang & Li, Xueyan, 2024. "A novel multiple linearization method for reliability analysis based on evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    13. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    16. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    17. Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Zhou, Changcong & Zhang, Hanlin & Valdebenito, Marcos A. & Zhao, Haodong, 2022. "A general hierarchical ensemble-learning framework for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
    20. Xiao, Tianli & Park, Chanseok & Lin, Chenglong & Ouyang, Linhan & Ma, Yizhong, 2023. "Hybrid reliability analysis with incomplete interval data based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:nmncxx:v:15:y:2019:i:01:n:s1793005719500030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/nmnc/nmnc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.