IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v163y2019icp19-31.html
   My bibliography  Save this article

Sensitivity indices for independent groups of variables

Author

Listed:
  • Broto, Baptiste
  • Bachoc, François
  • Depecker, Marine
  • Martinez, Jean-Marc

Abstract

In this paper, we study sensitivity indices for independent groups of variables and we look at the particular case of block-additive models. We show in this case that most of the Sobol indices are equal to zero and that Shapley effects can be estimated more efficiently. We then apply this study to Gaussian linear models, and we provide an efficient algorithm to compute the theoretical sensitivity indices. In numerical experiments, we show that this algorithm compares favourably to other existing methods. We also use the theoretical results to improve the estimation of the Shapley effects for general models, when the inputs form independent groups of variables.

Suggested Citation

  • Broto, Baptiste & Bachoc, François & Depecker, Marine & Martinez, Jean-Marc, 2019. "Sensitivity indices for independent groups of variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 19-31.
  • Handle: RePEc:eee:matcom:v:163:y:2019:i:c:p:19-31
    DOI: 10.1016/j.matcom.2019.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419300564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    2. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    3. Jacques, Julien & Lavergne, Christian & Devictor, Nicolas, 2006. "Sensitivity analysis in presence of model uncertainty and correlated inputs," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1126-1134.
    4. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    5. Hammer, Hugo & Tjelmeland, Håkon, 2011. "Approximate forward-backward algorithm for a switching linear Gaussian model," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 154-167, January.
    6. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    7. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "Uncertainty and sensitivity analysis for models with correlated parameters," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1563-1573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vuillod, Bruno & Montemurro, Marco & Panettieri, Enrico & Hallo, Ludovic, 2023. "A comparison between Sobol’s indices and Shapley’s effect for global sensitivity analysis of systems with independent input variables," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Eranga M. Wimalasiri & Ebrahim Jahanshiri & Tengku Adhwa Syaherah Tengku Mohd Suhairi & Hasika Udayangani & Ranjith B. Mapa & Asha S. Karunaratne & Lal P. Vidhanarachchi & Sayed N. Azam-Ali, 2020. "Basic Soil Data Requirements for Process-Based Crop Models as a Basis for Crop Diversification," Sustainability, MDPI, vol. 12(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    2. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    3. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    4. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    5. Zhou Changcong & Ji Mengyao & Zhao Haodong & Cao Fei, 2021. "Uncertainty analysis of motion error for mechanisms and Kriging-based solutions," Journal of Risk and Reliability, , vol. 235(5), pages 731-743, October.
    6. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    7. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    8. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    9. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    10. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    11. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2021. "Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 721-737.
    12. Lin, Yan-Hui & Yam, Richard C.M., 2017. "Uncertainty importance measures of dependent transition rates for transient and steady state probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 402-409.
    13. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    14. Xie, Xiangzhong & Schenkendorf, René & Krewer, Ulrike, 2019. "Efficient sensitivity analysis and interpretation of parameter correlations in chemical engineering," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 159-173.
    15. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    16. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    17. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    18. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    19. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    20. Stefano Cucurachi & Carlos Felipe Blanco & Bernhard Steubing & Reinout Heijungs, 2022. "Implementation of uncertainty analysis and moment‐independent global sensitivity analysis for full‐scale life cycle assessment models," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 374-391, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:163:y:2019:i:c:p:19-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.