IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i3p513-525.html
   My bibliography  Save this article

A structure-based software reliability allocation using fuzzy analytic hierarchy process

Author

Listed:
  • Subhashis Chatterjee
  • Jeetendra B. Singh
  • Arunava Roy

Abstract

During the design phase of a software, it is often required to evaluate the reliability of the software system. At this stage of development, one crucial question arises ‘how to achieve a target reliability of the software?’ Reliability allocation methods can be used to set reliability goals for individual components. In this paper, a software reliability allocation model has been proposed incorporating the user view point about various functions of a software. Proposed reliability allocation method attempts to answer the question ‘how reliable should the system components be?' The proposed model will be useful for determining the reliability goal at the planning and design phase of a software project, hence making reliability a singular measure for performance evaluation. Proposed model requires a systematic formulation of user requirements and preference into the technical design and reliability of the software. To accomplish this task, a system hierarchy has been established, which combines the user’s view of the system with that of the software manager and the programmer. Fuzzy analytic hierarchy process (FAHP) has been used to derive the required model parameters from the hierarchy. Sensitivity analysis has also been carried out in this paper. Finally, an example has been given to illustrate the effectiveness and feasibility of the proposed method.

Suggested Citation

  • Subhashis Chatterjee & Jeetendra B. Singh & Arunava Roy, 2015. "A structure-based software reliability allocation using fuzzy analytic hierarchy process," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 513-525, February.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:3:p:513-525
    DOI: 10.1080/00207721.2013.791001
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.791001
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.791001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang Pham, 2006. "System Software Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-295-9, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritu Chandna & Mangey Ram, 2016. "Fuzzy analytic hierarchy process to a structure under 2-out-of-3:F modeling," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 693-704, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    2. Subhashis Chatterjee & Shobhit Nigam & Jeetendra Bahadur Singh & Lakshmi Narayan Upadhyaya, 2012. "Effect of change point and imperfect debugging in software reliability and its optimal release policy," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(5), pages 539-551, March.
    3. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
    4. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    5. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    6. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    7. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    8. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    9. Triet Pham & Hoang Pham, 2019. "A generalized software reliability model with stochastic fault-detection rate," Annals of Operations Research, Springer, vol. 277(1), pages 83-93, June.
    10. Yuka Minamino & Yusuke Makita & Shinji Inoue & Shigeru Yamada, 2022. "Efficiency Evaluation of Software Faults Correction Based on Queuing Simulation," Mathematics, MDPI, vol. 10(9), pages 1-9, April.
    11. Kelly, Dana L. & Smith, Curtis L., 2009. "Bayesian inference in probabilistic risk assessment—The current state of the art," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 628-643.
    12. Yaghoobi, Tahere, 2020. "Parameter optimization of software reliability models using improved differential evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 46-62.
    13. Liviu Adrian COTFAS & Andreea DIOSTEANU, 2010. "Software Reliability in Semantic Web Service Composition Applications," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 14(4), pages 48-56.
    14. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    15. Gaurav Mishra & P. K. Kapur & Anu G. Aggarwal, 2023. "A generalized multi-upgradation SRGM considering uncertainty of random field operating environments," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 328-336, March.
    16. Bistouni, Fathollah & Jahanshahi, Mohsen, 2017. "Remove and contraction: A novel method for calculating the reliability of Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 362-375.
    17. Vikas Dhaka & Nidhi Nijhawan, 2024. "Effect of change in environment on reliability growth modeling integrating fault reduction factor and change point: a general approach," Annals of Operations Research, Springer, vol. 340(1), pages 181-215, September.
    18. Hoang Pham, 2020. "Estimating the COVID-19 Death Toll by Considering the Time-Dependent Effects of Various Pandemic Restrictions," Mathematics, MDPI, vol. 8(9), pages 1-12, September.
    19. Hoang Pham, 2019. "A New Criterion for Model Selection," Mathematics, MDPI, vol. 7(12), pages 1-12, December.
    20. S. Chatterjee & S. Nigam & J. B. Singh & L. N. Upadhyaya, 2011. "Application of fuzzy time series in prediction of time between failures & faults in software reliability assessment," Fuzzy Information and Engineering, Springer, vol. 3(3), pages 293-309, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:3:p:513-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.