IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v17y1997i2p249-252.html
   My bibliography  Save this article

On the Solution Approach for Bayesian Modeling of Initiating Event Frequencies and Failure Rates

Author

Listed:
  • Eduard Hofer
  • Stephen C. Hora
  • Ronald L. Iman
  • Jörg Peschke

Abstract

There is a need for plant‐specific distributions of incidence and failure rates rather than distributions from pooled data which are based on the “common incidence rate” assumption. The so‐called superpopulation model satisfies this need through a practically appealing approach that accounts for the variability over the population of plants. Unfortunately, the chosen order in which the integrals with respect to the individual plant rates λi, (i= 0, 1…, m) and the parameters a, β of the Γ‐population distribution are solved seems to drive the solution close to the common incidence rate distribution. It is shown that the solution obtained from interchanging the order and solving the integrals with respect to the individual plant rates by Monte Carlo simulation very quickly provides the plant specific distribution. This differing solution behaviour may be due to the lack of uniform convergence over (α, β, λI, (i= 1,…, m))‐space. Examples illustrate the difference that may be observed.

Suggested Citation

  • Eduard Hofer & Stephen C. Hora & Ronald L. Iman & Jörg Peschke, 1997. "On the Solution Approach for Bayesian Modeling of Initiating Event Frequencies and Failure Rates," Risk Analysis, John Wiley & Sons, vol. 17(2), pages 249-252, April.
  • Handle: RePEc:wly:riskan:v:17:y:1997:i:2:p:249-252
    DOI: 10.1111/j.1539-6924.1997.tb00863.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1997.tb00863.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1997.tb00863.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen C. Hora & Ronald L. Iman, 1990. "Bayesian Modeling of Initiating Event Frequencies at Nuclear Power Plants," Risk Analysis, John Wiley & Sons, vol. 10(1), pages 103-109, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bunea, C. & Charitos, T. & Cooke, R.M. & Becker, G., 2005. "Two-stage Bayesian models—application to ZEDB project," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 123-130.
    2. John Quigley & Kevin J. Wilson & Lesley Walls & Tim Bedford, 2013. "A Bayes Linear Bayes Method for Estimation of Correlated Event Rates," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2209-2224, December.
    3. Vaurio, Jussi K. & Jänkälä, Kalle E., 2006. "Evaluation and comparison of estimation methods for failure rates and probabilities," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 209-221.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bunea, C. & Charitos, T. & Cooke, R.M. & Becker, G., 2005. "Two-stage Bayesian models—application to ZEDB project," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 123-130.
    2. das Chagas Moura, Márcio & Azevedo, Rafael Valença & Droguett, Enrique López & Chaves, Leandro Rego & Lins, Isis Didier & Vilela, Romulo Fernando & Filho, Romero Sales, 2016. "Estimation of expected number of accidents and workforce unavailability through Bayesian population variability analysis and Markov-based model," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 136-146.
    3. Johannes G. Jaspersen & Gilberto Montibeller, 2015. "Probability Elicitation Under Severe Time Pressure: A Rank‐Based Method," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1317-1335, July.
    4. Forell, Burkhard & Peschke, Jörg & Einarsson, Svante & Röwekamp, Marina, 2016. "Technical reliability of active fire protection features – generic database derived from German nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 277-286.
    5. Ronald L. Iman & Jon C. Helton, 1991. "The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 591-606, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:17:y:1997:i:2:p:249-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.