Advantages of variance reduction techniques in establishing confidence intervals for quantiles
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2015.12.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Falk, Michael, 1986. "On the estimation of the quantile density function," Statistics & Probability Letters, Elsevier, vol. 4(2), pages 69-73, March.
- Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Alban, Andres & Darji, Hardik A. & Imamura, Atsuki & Nakayama, Marvin K., 2017. "Efficient Monte Carlo methods for estimating failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 376-394.
- Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu & Ilya O. Ryzhov, 2021. "Efficient Sampling Allocation Procedures for Optimal Quantile Selection," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 230-245, January.
- Sanchez-Saez, F. & Sánchez, A.I. & Villanueva, J.F. & Carlos, S. & Martorell, S., 2018. "Uncertainty analysis of a large break loss of coolant accident in a pressurized water reactor using non-parametric methods," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 19-28.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hui Dong & Marvin K. Nakayama, 2017. "Quantile Estimation with Latin Hypercube Sampling," Operations Research, INFORMS, vol. 65(6), pages 1678-1695, December.
- Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
- Michael Falk, 1997. "On Mad and Comedians," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 615-644, December.
- E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
- Cheng, Cheng, 1998. "A Berry-Esséen-type theorem of quantile density estimators," Statistics & Probability Letters, Elsevier, vol. 39(3), pages 255-262, August.
- Shane G. Henderson & Peter W. Glynn, 2001. "Computing Densities for Markov Chains via Simulation," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 375-400, May.
- Chang, Kuo-Hao, 2015. "A direct search method for unconstrained quantile-based simulation optimization," European Journal of Operational Research, Elsevier, vol. 246(2), pages 487-495.
- Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
- Dodge, Yadolah & Jurecková, Jana, 1995. "Estimation of quantile density function based on regression quantiles," Statistics & Probability Letters, Elsevier, vol. 23(1), pages 73-78, April.
- Emad A. A. Aly & Marilou O. Hervas, 1999. "Nonparametric inference for Zenga's measure of income inequality," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 69-84.
- Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
- Chen, E. Jack & Kelton, W. David, 2006. "Quantile and tolerance-interval estimation in simulation," European Journal of Operational Research, Elsevier, vol. 168(2), pages 520-540, January.
- Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
- Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.
- Futschik, A., 1999. "A new estimate of the mode based on the quantile density," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 145-152, June.
- L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
- T. Glenn Bailey & Paul A. Jensen & David P. Morton, 1999. "Response surface analysis of two‐stage stochastic linear programming with recourse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 753-776, October.
- Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
- Marc Hallin & Bas Werker, 2003.
"Semiparametric efficiency, distribution-freeness, and invariance,"
ULB Institutional Repository
2013/2119, ULB -- Universite Libre de Bruxelles.
- Hallin, M. & Werker, B.J.M., 2003. "Semiparametric efficiency, distribution-freeness and invariance," Other publications TiSEM fe20db00-786a-4261-9999-6, Tilburg University, School of Economics and Management.
- Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
More about this item
Keywords
Confidence intervals; Quantiles; Nuclear regulation; Best-estimate; Uncertainty;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:149:y:2016:i:c:p:187-203. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.