IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v65y2017i6p1678-1695.html
   My bibliography  Save this article

Quantile Estimation with Latin Hypercube Sampling

Author

Listed:
  • Hui Dong

    (Supply Chain Management and Marketing Sciences Department, Rutgers University, Newark, New Jersey 07102)

  • Marvin K. Nakayama

    (Computer Science Department, New Jersey Institute of Technology, Newark, New Jersey 07102)

Abstract

Quantiles are often used to measure risk of stochastic systems. We examine quantile estimators obtained using simulation with Latin hypercube sampling (LHS), a variance-reduction technique that efficiently extends stratified sampling to higher dimensions and produces negatively correlated outputs. We consider single-sample LHS (ssLHS), which minimizes the variance that can be obtained from LHS, and also replicated LHS (rLHS). We develop a consistent estimator of the asymptotic variance of the ssLHS quantile estimator’s central limit theorem, enabling us to provide the first confidence interval (CI) for a quantile when applying ssLHS. For rLHS, we construct CIs using batching and sectioning. On average, our rLHS CIs are shorter than previous rLHS CIs and only slightly wider than the ssLHS CI. We establish the asymptotic validity of the CIs by first proving that the quantile estimators satisfy Bahadur representations, which show that the quantile estimators can be approximated by linear transformations of estimators of the cumulative distribution function. We present numerical results comparing the various CIs.

Suggested Citation

  • Hui Dong & Marvin K. Nakayama, 2017. "Quantile Estimation with Latin Hypercube Sampling," Operations Research, INFORMS, vol. 65(6), pages 1678-1695, December.
  • Handle: RePEc:inm:oropre:v:65:y:2017:i:6:p:1678-1695
    DOI: 10.1287/opre.2017.1637
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2017.1637
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2017.1637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hall, Peter & Martin, Michael A., 1989. "A note on the accuracy of bootstrap percentile method confidence intervals for a quantile," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 197-200, August.
    2. Falk, Michael, 1986. "On the estimation of the quantile density function," Statistics & Probability Letters, Elsevier, vol. 4(2), pages 69-73, March.
    3. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    4. Xing Jin & Michael C. Fu & Xiaoping Xiong, 2003. "Probabilistic Error Bounds for Simulation Quantile Estimators," Management Science, INFORMS, vol. 49(2), pages 230-246, February.
    5. Jason C. Hsu & Barry L. Nelson, 1990. "Control Variates for Quantile Estimation," Management Science, INFORMS, vol. 36(7), pages 835-851, July.
    6. Timothy C. Hesterberg & Barry L. Nelson, 1998. "Control Variates for Probability and Quantile Estimation," Management Science, INFORMS, vol. 44(9), pages 1295-1312, September.
    7. William H. Kaczynski & Lawrence M. Leemis & John H. Drew, 2012. "Transient Queueing Analysis," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 10-28, February.
    8. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
    2. Jack P. C. Kleijnen & Wim C. M. van Beers, 2022. "Statistical Tests for Cross-Validation of Kriging Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 607-621, January.
    3. Kleijnen, Jack & van Beers, W.C.M., 2019. "Statistical Tests for Cross-Validation of Kriging Models," Other publications TiSEM 35fba511-2931-47d5-a9ba-3, Tilburg University, School of Economics and Management.
    4. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    5. Ye, Wuyi & Zhou, Yi & Chen, Pengzhan & Wu, Bin, 2024. "A simulation-based method for estimating systemic risk measures," European Journal of Operational Research, Elsevier, vol. 313(1), pages 312-324.
    6. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    3. Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.
    4. Xing Jin & Michael C. Fu & Xiaoping Xiong, 2003. "Probabilistic Error Bounds for Simulation Quantile Estimators," Management Science, INFORMS, vol. 49(2), pages 230-246, February.
    5. Chen, E. Jack & Kelton, W. David, 2006. "Quantile and tolerance-interval estimation in simulation," European Journal of Operational Research, Elsevier, vol. 168(2), pages 520-540, January.
    6. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
    7. Ye, Wuyi & Zhou, Yi & Chen, Pengzhan & Wu, Bin, 2024. "A simulation-based method for estimating systemic risk measures," European Journal of Operational Research, Elsevier, vol. 313(1), pages 312-324.
    8. Xing Jin & Allen X. Zhang, 2006. "Reclaiming Quasi-Monte Carlo Efficiency in Portfolio Value-at-Risk Simulation Through Fourier Transform," Management Science, INFORMS, vol. 52(6), pages 925-938, June.
    9. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    10. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    11. Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
    12. Wei Jiang & Steven Kou, 2021. "Simulating risk measures via asymptotic expansions for relative errors," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 907-942, July.
    13. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    14. Grabaskas, Dave & Nakayama, Marvin K. & Denning, Richard & Aldemir, Tunc, 2016. "Advantages of variance reduction techniques in establishing confidence intervals for quantiles," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 187-203.
    15. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    16. Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
    17. Hallin, M. & Werker, B.J.M., 2003. "Semiparametric efficiency, distribution-freeness and invariance," Other publications TiSEM fe20db00-786a-4261-9999-6, Tilburg University, School of Economics and Management.
    18. Begen, Mehmet A. & Pun, Hubert & Yan, Xinghao, 2016. "Supply and demand uncertainty reduction efforts and cost comparison," International Journal of Production Economics, Elsevier, vol. 180(C), pages 125-134.
    19. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    20. Michael Falk, 1997. "On Mad and Comedians," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 615-644, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:65:y:2017:i:6:p:1678-1695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.