IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v149y2016icp107-120.html
   My bibliography  Save this article

Time-dependent reliability sensitivity analysis of motion mechanisms

Author

Listed:
  • Wei, Pengfei
  • Song, Jingwen
  • Lu, Zhenzhou
  • Yue, Zhufeng

Abstract

Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage.

Suggested Citation

  • Wei, Pengfei & Song, Jingwen & Lu, Zhenzhou & Yue, Zhufeng, 2016. "Time-dependent reliability sensitivity analysis of motion mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 107-120.
  • Handle: RePEc:eee:reensy:v:149:y:2016:i:c:p:107-120
    DOI: 10.1016/j.ress.2015.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015003713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pengfei Wei & Jingwen Song & Zhenzhou Lu, 2016. "Global reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 230(3), pages 265-277, June.
    2. Zhang, Leigang & Lu, Zhenzhou & Cheng, Lei & Fan, Chongqing, 2014. "A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 163-175.
    3. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    4. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    5. Wang, Zequn & Wang, Pingfeng, 2013. "A new approach for reliability analysis with time-variant performance characteristics," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 70-81.
    6. Zhai, Qingqing & Yang, Jun & Xie, Min & Zhao, Yu, 2014. "Generalized moment-independent importance measures based on Minkowski distance," European Journal of Operational Research, Elsevier, vol. 239(2), pages 449-455.
    7. Zhang, Xufang & Pandey, Mahesh D., 2014. "An effective approximation for variance-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 164-174.
    8. Jingwen Song & Zhenzhou Lu & Pengfei Wei & Yanping Wang, 2015. "Global sensitivity analysis for model with random inputs characterized by probability-box," Journal of Risk and Reliability, , vol. 229(3), pages 237-253, June.
    9. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qian & Pan, Ning & Meloni, Marco & Lu, Dong & Cai, Jianguo & Feng, Jian, 2021. "Reliability analysis of radially retractable roofs with revolute joint clearances," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Cheng, Kai & Lu, Zhenzhou, 2019. "Time-variant reliability analysis based on high dimensional model representation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 310-319.
    3. Chang, Qi & Zhou, Changcong & Wei, Pengfei & Zhang, Yishang & Yue, Zhufeng, 2021. "A new non-probabilistic time-dependent reliability model for mechanisms with interval uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Pengfei Wei & Chenghu Tang & Yuting Yang, 2019. "Structural reliability and reliability sensitivity analysis of extremely rare failure events by combining sampling and surrogate model methods," Journal of Risk and Reliability, , vol. 233(6), pages 943-957, December.
    5. Yang, Bin & Yang, Wenyu, 2023. "Modular approach to kinematic reliability analysis of industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Wenxuan Wang & Hangshan Gao & Pengfei Wei & Changcong Zhou, 2017. "Extending first-passage method to reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 231(5), pages 573-586, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    2. Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
    3. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    4. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2021. "Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 721-737.
    5. Derennes, Pierre & Morio, Jérôme & Simatos, Florian, 2019. "A nonparametric importance sampling estimator for moment independent importance measures," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 3-16.
    6. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Wenxuan Wang & Hangshan Gao & Pengfei Wei & Changcong Zhou, 2017. "Extending first-passage method to reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 231(5), pages 573-586, October.
    8. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    9. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    10. Zdeněk Kala, 2024. "Global Sensitivity Analysis of Structural Reliability Using Cliff Delta," Mathematics, MDPI, vol. 12(13), pages 1-18, July.
    11. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    12. Zhang, Kaichao & Lu, Zhenzhou & Cheng, Kai & Wang, Laijun & Guo, Yanling, 2020. "Global sensitivity analysis for multivariate output model and dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Xing Pan & Lunhu Hu & Ziling Xin & Shenghan Zhou & Yanmei Lin & Yong Wu, 2018. "Risk Scenario Generation Based on Importance Measure Analysis," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    14. Lin, Yan-Hui & Yam, Richard C.M., 2017. "Uncertainty importance measures of dependent transition rates for transient and steady state probabilities," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 402-409.
    15. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    16. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    17. Pengfei Wei & Jingwen Song & Zhenzhou Lu, 2016. "Global reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 230(3), pages 265-277, June.
    18. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    19. Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
    20. Kim, Taeyong & Song, Junho, 2018. "Generalized Reliability Importance Measure (GRIM) using Gaussian mixture," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 105-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:149:y:2016:i:c:p:107-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.