IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i3p364-372.html
   My bibliography  Save this article

Probabilistic evaluation of initiation time of chloride-induced corrosion

Author

Listed:
  • Val, Dimitri V.
  • Trapper, Pavel A.

Abstract

The paper presents a model for chloride ingress into concrete. The model accounts for two mechanisms which control the chloride ingress—diffusion and convection. Using one-dimensional (1-D) formulation of the model, the influence of chloride binding and ambient humidity on chloride ingress into concrete has been investigated. Based on results of this investigation parameters for probabilistic analysis have been selected. Probabilistic evaluation of the time to corrosion initiation has then been carried out for a reinforced concrete (RC) wall (1-D problem) and a RC column (2-D problem) in a marine environment. Results of the analysis show that for the same thickness of the concrete cover the probability of corrosion initiation in the corner reinforcing bars of the RC column is much higher than in reinforcing bars in the middle part of the RC wall. The results demonstrate the importance of 2-D modelling for correct prediction of corrosion initiation in such RC elements as columns and beams.

Suggested Citation

  • Val, Dimitri V. & Trapper, Pavel A., 2008. "Probabilistic evaluation of initiation time of chloride-induced corrosion," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 364-372.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:3:p:364-372
    DOI: 10.1016/j.ress.2006.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832007000129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingji Zhu & Zaixian Chen & Hao Wang & Yabin Chen & Longjun Xu, 2018. "Probabilistic Generalization of a Comprehensive Model for the Deterioration Prediction of RC Structure under Extreme Corrosion Environments," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    2. Chao Jiang & Jing Fang, 2020. "Time-Dependent Reliability-Based Service Life Assessment of RC Bridges Subjected to Carbonation under a Changing Climate," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    3. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Bigaud, David & Ali, Osama, 2014. "Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 257-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:3:p:364-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.