IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v117y2013icp9-20.html
   My bibliography  Save this article

Sensitivity measures for optimal mitigation of risk and reduction of model uncertainty

Author

Listed:
  • Mahsuli, M.
  • Haukaas, T.

Abstract

This paper presents a new set of reliability sensitivity measures. The purpose is to identify the optimal manner in which to mitigate risk to civil infrastructure, and reduce model uncertainty in order to improve risk estimates. Three measures are presented. One identifies the infrastructure components that should be prioritized for retrofit. Another measure identifies the infrastructure that should be prioritized for more refined modeling. The third measure identifies the models that should be prioritized in research to improve models, for example by gathering new data. The developments are presented in the context of a region with 622 buildings that are subjected to seismicity from several sources. A comprehensive seismic risk analysis of this region is conducted, with over 300 random variables, 30 model types, and 4000 model instances. All models are probabilistic and emphasis is placed on the explicit characterization of epistemic uncertainty. For the considered region, the buildings that should first be retrofitted are found to be pre-code unreinforced masonry buildings. Conversely, concrete shear wall buildings rank highest on the list of buildings that should be subjected to more detailed modeling. The ground shaking intensity model for shallow crustal earthquakes and the concrete shear wall structural response model rank highest on the list of models that should be prioritized by research to improve engineering analysis models.

Suggested Citation

  • Mahsuli, M. & Haukaas, T., 2013. "Sensitivity measures for optimal mitigation of risk and reduction of model uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 9-20.
  • Handle: RePEc:eee:reensy:v:117:y:2013:i:c:p:9-20
    DOI: 10.1016/j.ress.2013.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saltelli, Andrea & Ratto, Marco & Tarantola, Stefano & Campolongo, Francesca, 2006. "Sensitivity analysis practices: Strategies for model-based inference," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1109-1125.
    2. Der Kiureghian, Armen & Ditlevsen, Ove D. & Song, Junho, 2007. "Availability, reliability and downtime of systems with repairable components," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 231-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dobrota, Marina & Martic, Milan & Bulajic, Milica & Jeremic, Veljko, 2015. "Two-phased composite I-distance indicator approach for evaluation of countries’ information development," Telecommunications Policy, Elsevier, vol. 39(5), pages 406-420.
    2. Blagojević, Nikola & Didier, Max & Stojadinović, Božidar, 2022. "Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    2. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    3. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    4. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    5. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    6. Reder, Klara & Alcamo, Joseph & Flörke, Martina, 2017. "A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers," Ecological Modelling, Elsevier, vol. 351(C), pages 129-139.
    7. Thalles Vitelli Garcez & Helder Tenório Cavalcanti & Adiel Teixeira de Almeida, 2021. "A hybrid decision support model using Grey Relational Analysis and the Additive-Veto Model for solving multicriteria decision-making problems: an approach to supplier selection," Annals of Operations Research, Springer, vol. 304(1), pages 199-231, September.
    8. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    9. Byun, Ji-Eun & Song, Junho, 2021. "Generalized matrix-based Bayesian network for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    11. Narkuniene, Asta & Poskas, Povilas & Kilda, Raimondas & Bartkus, Gytis, 2015. "Uncertainty and sensitivity analysis of radionuclide migration through the engineered barriers of deep geological repository: Case of RBMK-1500 SNF," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 8-16.
    12. Ahmadi, Mehdi & Ascough, James C. & DeJonge, Kendall C. & Arabi, Mazdak, 2014. "Multisite-multivariable sensitivity analysis of distributed watershed models: Enhancing the perceptions from computationally frugal methods," Ecological Modelling, Elsevier, vol. 279(C), pages 54-67.
    13. Chao Shi & Kenneth C. Land, 2021. "The Data Envelopment Analysis and Equal Weights/Minimax Methods of Composite Social Indicator Construction: a Methodological Study of Data Sensitivity and Robustness," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(4), pages 1689-1716, August.
    14. Pannier, S. & Graf, W., 2015. "Sectional global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 110-117.
    15. Ciric, C. & Ciffroy, P. & Charles, S., 2012. "Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 246(C), pages 119-130.
    16. Lin, Chaochao & Song, Junho & Pozzi, Matteo, 2022. "Optimal inspection of binary systems via Value of Information analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Yu, W. & Harris, T.J., 2009. "Parameter uncertainty effects on variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 596-603.
    18. Mohammed Abed & Ehsan Mehryaar, 2024. "A Machine Learning Approach to Predict Relative Residual Strengths of Recycled Aggregate Concrete after Exposure to High Temperatures," Sustainability, MDPI, vol. 16(5), pages 1-26, February.
    19. Fonoberova, Maria & Fonoberov, Vladimir A. & Mezić, Igor, 2013. "Global sensitivity/uncertainty analysis for agent-based models," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 8-17.
    20. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:117:y:2013:i:c:p:9-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.