IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i2p231-242.html
   My bibliography  Save this article

Availability, reliability and downtime of systems with repairable components

Author

Listed:
  • Der Kiureghian, Armen
  • Ditlevsen, Ove D.
  • Song, Junho

Abstract

Closed-form expressions are derived for the steady-state availability, mean rate of failure, mean duration of downtime and lower bound reliability of a general system with randomly and independently failing repairable components. Component failures are assumed to be homogeneous Poisson events in time and repair durations are assumed to be exponentially distributed. The results are expressed in terms of the mean rates of failure and mean durations of repair of the individual components. Closed-form expressions are also derived for the rates of change of the various probabilistic system performance measures with respect to the mean rate of failure and the mean duration of repair of each component. These expressions provide a convenient framework for identifying important components within the system and for decision-making aimed at upgrading the system availability or reliability, or reducing the mean duration of system downtime. Example applications to an electrical substation system demonstrate the use of the formulas developed in the paper.

Suggested Citation

  • Der Kiureghian, Armen & Ditlevsen, Ove D. & Song, Junho, 2007. "Availability, reliability and downtime of systems with repairable components," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 231-242.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:2:p:231-242
    DOI: 10.1016/j.ress.2005.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006000044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    2. Çekyay, B. & Özekici, S., 2010. "Mean time to failure and availability of semi-Markov missions with maximal repair," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1442-1454, December.
    3. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Byun, Ji-Eun & de Oliveira, Welington & Royset, Johannes O., 2023. "S-BORM: Reliability-based optimization of general systems using buffered optimization and reliability method," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Mahsuli, M. & Haukaas, T., 2013. "Sensitivity measures for optimal mitigation of risk and reduction of model uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 9-20.
    6. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    7. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    8. Lirong Cui & Shijia Du & Aofu Zhang, 2014. "Reliability measures for two-part partition of states for aggregated Markov repairable systems," Annals of Operations Research, Springer, vol. 212(1), pages 93-114, January.
    9. Lin, Chaochao & Song, Junho & Pozzi, Matteo, 2022. "Optimal inspection of binary systems via Value of Information analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Byun, Ji-Eun & Song, Junho, 2021. "Generalized matrix-based Bayesian network for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:2:p:231-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.