IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v351y2017icp129-139.html
   My bibliography  Save this article

A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers

Author

Listed:
  • Reder, Klara
  • Alcamo, Joseph
  • Flörke, Martina

Abstract

Continental-scale water quality modeling is a new scientific approach concerned with computing the level of water pollution for several river basins at once. Uncertainties in these models, and in models of smaller scale, arise especially from the specification of model parameters. To identify and analyze these uncertainties we perform a global sensitivity and uncertainty analysis using Latin Hypercube Sampling on the WorldQual water quality model. The focus of the analysis is the river pathogen model of WorldQual as applied to rivers in Africa. This is the first uncertainty and sensitivity analysis performed on a continental-scale pathogen river pollution model. The median output uncertainty of the model (coefficient of variation, based on log-transformed data), assuming plausible estimates of 42 parameter uncertainties, was 10.7%; 90% of grid cells had output uncertainties below 23%. The parameters making the largest contribution to this uncertainty (in order of importance) are the pathogen waste loading per capita, the in-stream settling velocity of pathogens, the percentage of population in a river basin connected to a sewer system, and the raw effluent concentration from the manufacturing sector. Over the continental study area, model output uncertainty and the most sensitive parameters were found to have a highly irregular spatial pattern. This finding suggests that model performance is a strong function of local and regional conditions and that reducing the uncertainty of a single parameter may not lead to large improvements in model performance over the entire continent. A more efficient approach would be to improve model performance region-by-region and improve the estimation of specific parameters known to have a large influence on model uncertainty in those regions. The analysis showed that only four parameters dominate output uncertainty over 93% of the study area, implying that model performance can be substantially improved by reducing the uncertainty of a small number of parameters.

Suggested Citation

  • Reder, Klara & Alcamo, Joseph & Flörke, Martina, 2017. "A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers," Ecological Modelling, Elsevier, vol. 351(C), pages 129-139.
  • Handle: RePEc:eee:ecomod:v:351:y:2017:i:c:p:129-139
    DOI: 10.1016/j.ecolmodel.2017.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017301485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coffey, R. & Cummins, E. & Bhreathnach, N. & Flaherty, V.O. & Cormican, M., 2010. "Development of a pathogen transport model for Irish catchments using SWAT," Agricultural Water Management, Elsevier, vol. 97(1), pages 101-111, January.
    2. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    3. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    4. Saltelli, Andrea & Ratto, Marco & Tarantola, Stefano & Campolongo, Francesca, 2006. "Sensitivity analysis practices: Strategies for model-based inference," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1109-1125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    3. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    4. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    5. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    6. Touzani, Samir & Busby, Daniel, 2013. "Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 67-81.
    7. Melito, Gian Marco & Müller, Thomas Stephan & Badeli, Vahid & Ellermann, Katrin & Brenn, Günter & Reinbacher-Köstinger, Alice, 2021. "Sensitivity analysis study on the effect of the fluid mechanics assumptions for the computation of electrical conductivity of flowing human blood," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    9. Emanuele Borgonovo & William Castaings & Stefano Tarantola, 2011. "Moment Independent Importance Measures: New Results and Analytical Test Cases," Risk Analysis, John Wiley & Sons, vol. 31(3), pages 404-428, March.
    10. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    11. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    12. Raymond K. W. Wong & Curtis B. Storlie & Thomas C. M. Lee, 2017. "A frequentist approach to computer model calibration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 635-648, March.
    13. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    14. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    15. Kucherenko, S. & Delpuech, B. & Iooss, B. & Tarantola, S., 2015. "Application of the control variate technique to estimation of total sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 251-259.
    16. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    17. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    18. Becker, William, 2020. "Metafunctions for benchmarking in sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. K. Sham Bhat & David S. Mebane & Priyadarshi Mahapatra & Curtis B. Storlie, 2017. "Upscaling Uncertainty with Dynamic Discrepancy for a Multi-Scale Carbon Capture System," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1453-1467, October.
    20. Ge, Qiao & Ciuffo, Biagio & Menendez, Monica, 2015. "Combining screening and metamodel-based methods: An efficient sequential approach for the sensitivity analysis of model outputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 334-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:351:y:2017:i:c:p:129-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.