IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1891-d1345774.html
   My bibliography  Save this article

A Machine Learning Approach to Predict Relative Residual Strengths of Recycled Aggregate Concrete after Exposure to High Temperatures

Author

Listed:
  • Mohammed Abed

    (Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 01102, USA
    These authors contributed equally to this work.)

  • Ehsan Mehryaar

    (Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 01102, USA
    These authors contributed equally to this work.)

Abstract

In recent years, there has been a heightened focus among researchers and policymakers on assessing the environmental impact and sustainability of human activities. In this context, the reutilization of construction materials, particularly recycled aggregate concrete, has emerged as an environmentally friendly choice in construction projects, gaining significant traction. This study addresses the critical need to investigate the mechanical properties of recycled aggregate concrete under diverse extreme scenarios. Conducting an extensive literature review, key findings were synthesized on the relative residual strength of recycled aggregate concrete following exposure to high temperatures. Leveraging these insights, innovative hybrid machine learning models were developed, offering practical equations and model trees for predicting the relative residual compressive strength, flexural strength, elasticity modulus, and splitting tensile strength of recycled aggregate concrete post high temperature exposure. Uncertainty analysis was performed on each model to assess the reliability, while sensitivity analysis was performed to find out the significance of each input variable for each predictive model. This paper presents interpretable models achieving high levels of performance, with R 2 values of 0.91, 0.94, 0.9, and 0.96 for predicting the relative residual compressive strength, flexural strength, modulus of elasticity, and splitting tensile strength of RCA concrete exposed to high temperatures, respectively. The unique contribution of the paper lies in the provision of easily applicable equations and model trees, enhancing accessibility for practitioners seeking to estimate mechanical properties of recycled aggregate concrete. Notably, our hybrid machine learning models stand out for their user-friendly nature compared with conventional ML algorithms, without compromising on accuracy. This paper not only advances our understanding of sustainable construction practices but also equips industry professionals with efficient tools for practical implementation.

Suggested Citation

  • Mohammed Abed & Ehsan Mehryaar, 2024. "A Machine Learning Approach to Predict Relative Residual Strengths of Recycled Aggregate Concrete after Exposure to High Temperatures," Sustainability, MDPI, vol. 16(5), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1891-:d:1345774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saltelli, Andrea & Ratto, Marco & Tarantola, Stefano & Campolongo, Francesca, 2006. "Sensitivity analysis practices: Strategies for model-based inference," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1109-1125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    2. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    3. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    4. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    5. Reder, Klara & Alcamo, Joseph & Flörke, Martina, 2017. "A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers," Ecological Modelling, Elsevier, vol. 351(C), pages 129-139.
    6. Masciantonio, Sergio, 2013. "Identifying, ranking and tracking systemically important financial institutions (SIFIs), from a global, EU and Eurozone perspective," MPRA Paper 46788, University Library of Munich, Germany.
    7. Thalles Vitelli Garcez & Helder Tenório Cavalcanti & Adiel Teixeira de Almeida, 2021. "A hybrid decision support model using Grey Relational Analysis and the Additive-Veto Model for solving multicriteria decision-making problems: an approach to supplier selection," Annals of Operations Research, Springer, vol. 304(1), pages 199-231, September.
    8. Melito, Gian Marco & Müller, Thomas Stephan & Badeli, Vahid & Ellermann, Katrin & Brenn, Günter & Reinbacher-Köstinger, Alice, 2021. "Sensitivity analysis study on the effect of the fluid mechanics assumptions for the computation of electrical conductivity of flowing human blood," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    10. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    11. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    12. Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    13. Narkuniene, Asta & Poskas, Povilas & Kilda, Raimondas & Bartkus, Gytis, 2015. "Uncertainty and sensitivity analysis of radionuclide migration through the engineered barriers of deep geological repository: Case of RBMK-1500 SNF," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 8-16.
    14. Ahmadi, Mehdi & Ascough, James C. & DeJonge, Kendall C. & Arabi, Mazdak, 2014. "Multisite-multivariable sensitivity analysis of distributed watershed models: Enhancing the perceptions from computationally frugal methods," Ecological Modelling, Elsevier, vol. 279(C), pages 54-67.
    15. Chiachío, Juan & Chiachío, Manuel & Sankararaman, Shankar & Saxena, Abhinav & Goebel, Kai, 2015. "Condition-based prediction of time-dependent reliability in composites," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 134-147.
    16. Chao Shi & Kenneth C. Land, 2021. "The Data Envelopment Analysis and Equal Weights/Minimax Methods of Composite Social Indicator Construction: a Methodological Study of Data Sensitivity and Robustness," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(4), pages 1689-1716, August.
    17. Pannier, S. & Graf, W., 2015. "Sectional global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 110-117.
    18. Ciric, C. & Ciffroy, P. & Charles, S., 2012. "Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 246(C), pages 119-130.
    19. Mahsuli, M. & Haukaas, T., 2013. "Sensitivity measures for optimal mitigation of risk and reduction of model uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 9-20.
    20. Zentner, Irmela & Tarantola, Stefano & de Rocquigny, E., 2011. "Sensitivity analysis for reliable design verification of nuclear turbosets," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 391-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1891-:d:1345774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.