IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v109y2013icp133-149.html
   My bibliography  Save this article

Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling

Author

Listed:
  • Stroeve, Sybert H.
  • Blom, Henk A.P.
  • Bakker, G.J. (Bert)

Abstract

In the safety literature it has been argued, that in a complex socio-technical system safety cannot be well analysed by event sequence based approaches, but requires to capture the complex interactions and performance variability of the socio-technical system. In order to evaluate the quantitative and practical consequences of these arguments, this study compares two approaches to assess accident risk of an example safety critical sociotechnical system. It contrasts an event sequence based assessment with a multi-agent dynamic risk model (MA-DRM) based assessment, both of which are performed for a particular runway incursion scenario. The event sequence analysis uses the well-known event tree modelling formalism and the MA-DRM based approach combines agent based modelling, hybrid Petri nets and rare event Monte Carlo simulation. The comparison addresses qualitative and quantitative differences in the methods, attained risk levels, and in the prime factors influencing the safety of the operation. The assessments show considerable differences in the accident risk implications of the performance of human operators and technical systems in the runway incursion scenario. In contrast with the event sequence based results, the MA-DRM based results show that the accident risk is not manifest from the performance of and relations between individual human operators and technical systems. Instead, the safety risk emerges from the totality of the performance and interactions in the agent based model of the safety critical operation considered, which coincides very well with the argumentation in the safety literature.

Suggested Citation

  • Stroeve, Sybert H. & Blom, Henk A.P. & Bakker, G.J. (Bert), 2013. "Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 133-149.
  • Handle: RePEc:eee:reensy:v:109:y:2013:i:c:p:133-149
    DOI: 10.1016/j.ress.2012.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012001433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouali, Mohamed & Barger, Pavol & Schon, Walter, 2012. "Backward reachability of Colored Petri Nets for systems diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 1-14.
    2. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    3. Sadou, Nabil & Demmou, Hamid, 2009. "Reliability analysis of discrete event dynamic systems with Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1848-1861.
    4. Kleyner, Andre & Volovoi, Vitali, 2010. "Application of Petri nets to reliability prediction of occupant safety systems with partial detection and repair," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 606-613.
    5. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rae, Andrew & Alexander, Rob & McDermid, John, 2014. "Fixing the cracks in the crystal ball: A maturity model for quantitative risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 67-81.
    2. Delgado, Luis & Gurtner, Gérald & Mazzarisi, Piero & Zaoli, Silvia & Valput, Damir & Cook, Andrew & Lillo, Fabrizio, 2021. "Network-wide assessment of ATM mechanisms using an agent-based model," Journal of Air Transport Management, Elsevier, vol. 95(C).
    3. Lai, Hsueh-Yi & Chen, Chun-Hsien & Zheng, Pai & Khoo, Li Pheng, 2020. "Investigating the evolving context of an unstable approach in aviation from mental model disconnects with an agent-based model," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Gholamizadeh, Kamran & Zarei, Esmaeil & Yazdi, Mohammad & Ramezanifar, Ehsan & Aliabadi, Mostafa Mirzaei, 2024. "A hybrid model for dynamic analysis of domino effects in chemical process industries," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Bris, Radim & Medonos, Sava & Wilkins, Chris & Zdráhala, Adam, 2014. "Time-dependent risk modeling of accidental events and responses in process industries," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 54-66.
    6. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2021. "A dynamic multi-agent approach for modeling the evolution of multi-hazard accident scenarios in chemical plants," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Skorupski, Jacek, 2015. "The risk of an air accident as a result of a serious incident of the hybrid type," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 37-52.
    8. Ke Niu & Wenbo Liu & Jia Zhang & Mengxuan Liang & Huimin Li & Yaqiong Zhang & Yihang Du, 2023. "A Task Complexity Analysis Method to Study the Emergency Situation under Automated Metro System," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    9. Stroeve, Sybert H. & Som, Pradip & van Doorn, Bas A. & (Bert) Bakker, G.J., 2016. "Strengthening air traffic safety management by moving from outcome-based towards risk-based evaluation of runway incursions," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 93-108.
    10. You, Qidong & Guo, Jianbin & Zeng, Shengkui & Che, Haiyang, 2024. "A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Chikha, Paulina & Skorupski, Jacek, 2022. "The risk of an airport traffic accident in the context of the ground handling personnel performance," Journal of Air Transport Management, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Wu, Xuedong & Chang, Yanchao & Mao, Jianxu & Du, Zhaoping, 2013. "Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 244-250.
    3. Simeu-Abazi, Zineb & Ahmad, Alali Alhouaij, 2011. "Optimisation of distributed maintenance: Modelling and application to the multi-factory production," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1564-1575.
    4. Robinson, Allen C. & Drake, Richard R. & Swan, M. Scot & Bennett, Nichelle L. & Smith, Thomas M. & Hooper, Russell & Laity, George R., 2021. "A software environment for effective reliability management for pulsed power design," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Gonçalves, P. & Sobral, J. & Ferreira, L.A., 2017. "Unmanned aerial vehicle safety assessment modelling through petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 383-393.
    6. Geovanna Hinojoza-Castro & Montserrat Gómez-Delgado & Wenseslao Plata-Rocha, 2022. "Real Estate Developers as Agents in the Simulation of Urban Sprawl," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
    7. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    8. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    9. Fei Xiong & Yun Liu & Zhenjiang Zhang, 2011. "Dynamics With Co-Evolution Of Individual Inclination And Opinion," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 51-62.
    10. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    11. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Karner, Alex & Niemeier, Deb, 2013. "Civil rights guidance and equity analysis methods for regional transportation plans: a critical review of literature and practice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 126-134.
    14. Niu, Gang & Yang, Bo-Suk & Pecht, Michael, 2010. "Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 786-796.
    15. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    16. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    17. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    18. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    19. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    20. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:109:y:2013:i:c:p:133-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.