IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v99y2012icp1-14.html
   My bibliography  Save this article

Backward reachability of Colored Petri Nets for systems diagnosis

Author

Listed:
  • Bouali, Mohamed
  • Barger, Pavol
  • Schon, Walter

Abstract

Embedded systems development creates a need of new design, verification and validation technics. Formal methods appear as a very interesting approach for embedded systems analysis, especially for dependability studies. The chosen formalism for this work is based on Colored Petri Net (CPN) for two main reasons: the expressivity and the formal nature. Also, they model easily the static and the dynamic natures of the studied systems. The main challenge of this work is to use existing models, which describe the system structure and/or behavior, to extract the dependability information in a most general case and failure diagnosis information in a particular case. The proposed approach is a CPN structural backward reachability analysis. It can be split into two parts. The first one is to perform the proposed analysis: inverse CPN. It is obtained thanks to structural transformations applied on the original CPN. The second part is the analysis implementation. This part needs some complementary concepts. Among them, the most important is the marking enhancement. The proposed approach is studied under two complementary aspects: algorithmic and theoretic aspects. The first one proposes transformations for the CPN inversion and the analysis implementation. The second aspect (the theoretical one) aims to offer a formal proof for the approach by applying two methods which are linear algebra and Linear Logic.

Suggested Citation

  • Bouali, Mohamed & Barger, Pavol & Schon, Walter, 2012. "Backward reachability of Colored Petri Nets for systems diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 1-14.
  • Handle: RePEc:eee:reensy:v:99:y:2012:i:c:p:1-14
    DOI: 10.1016/j.ress.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201100202X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadou, Nabil & Demmou, Hamid, 2009. "Reliability analysis of discrete event dynamic systems with Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1848-1861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonçalves, P. & Sobral, J. & Ferreira, L.A., 2017. "Unmanned aerial vehicle safety assessment modelling through petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 383-393.
    2. Stroeve, Sybert H. & Blom, Henk A.P. & Bakker, G.J. (Bert), 2013. "Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 133-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Simeu-Abazi, Zineb & Ahmad, Alali Alhouaij, 2011. "Optimisation of distributed maintenance: Modelling and application to the multi-factory production," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1564-1575.
    3. Simeu-Abazi, Zineb & Lefebvre, Arnaud & Derain, Jean-Pierre, 2011. "A methodology of alarm filtering using dynamic fault tree," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 257-266.
    4. Lai, Hsueh-Yi & Chen, Chun-Hsien & Zheng, Pai & Khoo, Li Pheng, 2020. "Investigating the evolving context of an unstable approach in aviation from mental model disconnects with an agent-based model," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Kleyner, Andre & Volovoi, Vitali, 2010. "Application of Petri nets to reliability prediction of occupant safety systems with partial detection and repair," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 606-613.
    7. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Gonçalves, P. & Sobral, J. & Ferreira, L.A., 2017. "Unmanned aerial vehicle safety assessment modelling through petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 383-393.
    9. Stroeve, Sybert H. & Blom, Henk A.P. & Bakker, G.J. (Bert), 2013. "Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 133-149.
    10. Signoret, Jean-Pierre & Dutuit, Yves & Cacheux, Pierre-Joseph & Folleau, Cyrille & Collas, Stéphane & Thomas, Philippe, 2013. "Make your Petri nets understandable: Reliability block diagrams driven Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 61-75.
    11. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:99:y:2012:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.