IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v138y2015icp176-193.html
   My bibliography  Save this article

Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application

Author

Listed:
  • Baraldi, Piero
  • Podofillini, Luca
  • Mkrtchyan, Lusine
  • Zio, Enrico
  • Dang, Vinh N.

Abstract

The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty.

Suggested Citation

  • Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
  • Handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:176-193
    DOI: 10.1016/j.ress.2015.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015000265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Najjar, Basim & Alsyouf, Imad, 2003. "Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making," International Journal of Production Economics, Elsevier, vol. 84(1), pages 85-100, April.
    2. Aven, T., 2011. "Interpretations of alternative uncertainty representations in a reliability and risk analysis context," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 353-360.
    3. Aven, Terje & Zio, Enrico, 2011. "Some considerations on the treatment of uncertainties in risk assessment for practical decision making," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 64-74.
    4. Kirwan, Barry & Gibson, W. Huw & Hickling, Brian, 2008. "Human error data collection as a precursor to the development of a human reliability assessment capability in air traffic management," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 217-233.
    5. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    6. Groth, Katrina M. & Swiler, Laura P., 2013. "Bridging the gap between HRA research and HRA practice: A Bayesian network version of SPAR-H," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 33-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2021. "An Integrated Data and Knowledge Model Addressing Aleatory and Epistemic Uncertainty for Oil Condition Monitoring," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Li, Xin & Chen, Chao & Hong, Yi-du & Yang, Fu-qiang, 2023. "Exploring hazardous chemical explosion accidents with association rules and Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Sorooshian, Shahryar & Tavana, Madjid & Ribeiro-Navarrete, Samuel, 2023. "From classical interpretive structural modeling to total interpretive structural modeling and beyond: A half-century of business research," Journal of Business Research, Elsevier, vol. 157(C).
    5. Jianping Li & Minglu Li & Dengsheng Wu & Qianzhi Dai & Hao Song, 2016. "A Bayesian Networks-Based Risk Identification Approach for Software Process Risk: The Context of Chinese Trustworthy Software," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1391-1412, November.
    6. Ivan Contreras & Remei Calm & Miguel A. Sainz & Pau Herrero & Josep Vehi, 2021. "Combining Grammatical Evolution with Modal Interval Analysis: An Application to Solve Problems with Uncertainty," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    7. Liu, Hu-Chen & Li, Zhaojun & Zhang, Jian-Qing & You, Xiao-Yue, 2018. "A large group decision making approach for dependence assessment in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 135-144.
    8. Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    10. Mkrtchyan, L. & Podofillini, L. & Dang, V.N., 2015. "Bayesian belief networks for human reliability analysis: A review of applications and gaps," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 1-16.
    11. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Wang, Wei & Maio, Francesco Di & Zio, Enrico, 2017. "Three-loop Monte Carlo simulation approach to Multi-State Physics Modeling for system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 276-289.
    13. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    14. Zwirglmaier, Kilian & Straub, Daniel & Groth, Katrina M., 2017. "Capturing cognitive causal paths in human reliability analysis with Bayesian network models," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 117-129.
    15. Wang, Wei & Di Maio, Francesco & Zio, Enrico, 2020. "Considering the human operator cognitive process for the interpretation of diagnostic outcomes related to component failures and cyber security attacks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Ji, Changcheng & Gao, Fei & Liu, Wenjiang, 2024. "Dependence assessment in human reliability analysis based on cloud model and best-worst method," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    2. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    3. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    4. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.
    5. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    6. Terje Aven, 2017. "Improving the foundation and practice of reliability engineering," Journal of Risk and Reliability, , vol. 231(3), pages 295-305, June.
    7. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    8. Landry, Steven J. & Lagu, Amit & Kinnari, Jouko, 2010. "State-based modeling of continuous human-integrated systems: An application to air traffic separation assurance," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 345-353.
    9. Ibsen Chivatá Cárdenas & Saad S.H. Al‐jibouri & Johannes I.M. Halman & Frits A. van Tol, 2013. "Capturing and Integrating Knowledge for Managing Risks in Tunnel Works," Risk Analysis, John Wiley & Sons, vol. 33(1), pages 92-108, January.
    10. R. B. Jongejan & B. Maaskant, 2015. "Quantifying Flood Risks in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 252-264, February.
    11. Qiu, Siqi & Ming, Xinguo, 2020. "An extended Birnbaum importance-based two-stage heuristic for component assignment problems under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    13. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    15. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    16. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    17. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    18. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    19. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.
    20. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:138:y:2015:i:c:p:176-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.