IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v170y2020icp205-220.html
   My bibliography  Save this article

Sensitivity analysis based dimension reduction of multiscale models

Author

Listed:
  • Nikishova, Anna
  • Comi, Giovanni E.
  • Hoekstra, Alfons G.

Abstract

In this paper, the sensitivity analysis of a single scale model is employed in order to reduce the input dimensionality of the related multiscale model, in this way, improving the efficiency of its uncertainty estimation. The approach is illustrated with two examples: a reaction model and the standard Ornstein–Uhlenbeck process. Additionally, a counterexample shows that an uncertain input should not be excluded from uncertainty quantification without estimating the response sensitivity to this parameter. In particular, an analysis of the function defining the relation between single scale components is required to understand whether single scale sensitivity analysis can be used to reduce the dimensionality of the overall multiscale model input space.

Suggested Citation

  • Nikishova, Anna & Comi, Giovanni E. & Hoekstra, Alfons G., 2020. "Sensitivity analysis based dimension reduction of multiscale models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 205-220.
  • Handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:205-220
    DOI: 10.1016/j.matcom.2019.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419303167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lim, Tjen-Sien & Loh, Wei-Yin, 1996. "A comparison of tests of equality of variances," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 287-301, July.
    2. Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
    3. Urbina, Angel & Mahadevan, Sankaran & Paez, Thomas L., 2011. "Quantification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1114-1125.
    4. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    5. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    6. Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
    7. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    2. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    3. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Lamboni, M. & Iooss, B. & Popelin, A.-L. & Gamboa, F., 2013. "Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 45-54.
    5. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    6. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    7. Azzini, Ivano & Rosati, Rossana, 2021. "Sobol’ main effect index: an Innovative Algorithm (IA) using Dynamic Adaptive Variances," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    9. Becker, William, 2020. "Metafunctions for benchmarking in sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    11. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    12. Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
    13. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    14. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    15. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    16. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    18. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    19. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    20. Fruth, J. & Roustant, O. & Kuhnt, S., 2019. "Support indices: Measuring the effect of input variables over their supports," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 17-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:205-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.