Derivative-based generalized sensitivity indices and Sobol’ indices
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2019.10.017
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2017. "Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 1-10.
- Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
- Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
- Garcia-Cabrejo, Oscar & Valocchi, Albert, 2014. "Global Sensitivity Analysis for multivariate output using Polynomial Chaos Expansion," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 25-36.
- Liu, Ruixue & Owen, Art B., 2006. "Estimating Mean Dimensionality of Analysis of Variance Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 712-721, June.
- E. Borgonovo & S. Tarantola & E. Plischke & M. D. Morris, 2014. "Transformations and invariance in the sensitivity analysis of computer experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 925-947, November.
- Roustant, O. & Fruth, J. & Iooss, B. & Kuhnt, S., 2014. "Crossed-derivative based sensitivity measures for interaction screening," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 105-118.
- Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
- Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
- Lamboni, M. & Iooss, B. & Popelin, A.-L. & Gamboa, F., 2013. "Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 45-54.
- Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matieyendou Lamboni, 2024. "Optimal Estimators of Cross-Partial Derivatives and Surrogates of Functions," Stats, MDPI, vol. 7(3), pages 1-22, July.
- Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
- Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
- Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
- Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
- Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
- Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
- Lamboni, Matieyendou, 2019. "Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 67-92.
- Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
- Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
- Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.
- Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
- Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
- Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
- Fruth, J. & Roustant, O. & Kuhnt, S., 2019. "Support indices: Measuring the effect of input variables over their supports," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 17-27.
- Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
- Roustant, O. & Fruth, J. & Iooss, B. & Kuhnt, S., 2014. "Crossed-derivative based sensitivity measures for interaction screening," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 105-118.
- Constantine, Paul G. & Diaz, Paul, 2017. "Global sensitivity metrics from active subspaces," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 1-13.
- Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
- Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
- Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
- Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
More about this item
Keywords
Derivatives; Generalized sensitivity indices; Matrix norms; MVU estimators; U-statistics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:170:y:2020:i:c:p:236-256. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.