IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v194y2022icp691-718.html
   My bibliography  Save this article

Weak derivative-based expansion of functions: ANOVA and some inequalities

Author

Listed:
  • Lamboni, Matieyendou

Abstract

Functional analysis of variance (FANOVA) is widely used in statistical modeling and sensitivity analysis. Knowing the important role of derivatives in models’ analysis and/or development such as variational formulation of phenomena, we develop new expansions of functions using their weak derivatives, the density and distribution functions of input variables. We also derive the expressions of ANOVA components based on weak cross-partial derivatives. We investigate its application in uncertainty quantification by proposing the derivative-based multivariate sensitivity analysis. Our approach allows for better assessing the main, interaction and total effects of inputs using weak derivatives, and we provide minimum variance unbiased estimators of the cross-covariances of ANOVA functionals for computing such effects in presence of multivariate and/or functional response models.

Suggested Citation

  • Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
  • Handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:691-718
    DOI: 10.1016/j.matcom.2021.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421004535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2017. "Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 1-10.
    2. Kucherenko, S. & Rodriguez-Fernandez, M. & Pantelides, C. & Shah, N., 2009. "Monte Carlo evaluation of derivative-based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1135-1148.
    3. Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
    4. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    5. Lamboni, Matieyendou, 2019. "Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 67-92.
    6. Roustant, O. & Fruth, J. & Iooss, B. & Kuhnt, S., 2014. "Crossed-derivative based sensitivity measures for interaction screening," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 105-118.
    7. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    9. Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matieyendou Lamboni, 2024. "Optimal Estimators of Cross-Partial Derivatives and Surrogates of Functions," Stats, MDPI, vol. 7(3), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    2. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    4. Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
    5. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    6. Matieyendou Lamboni, 2024. "Optimal Estimators of Cross-Partial Derivatives and Surrogates of Functions," Stats, MDPI, vol. 7(3), pages 1-22, July.
    7. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    8. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    9. Fruth, J. & Roustant, O. & Kuhnt, S., 2019. "Support indices: Measuring the effect of input variables over their supports," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 17-27.
    10. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    11. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    12. Kucherenko, Sergei & Song, Shufang & Wang, Lu, 2019. "Quantile based global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 35-48.
    13. Lamboni, Matieyendou, 2019. "Multivariate sensitivity analysis: Minimum variance unbiased estimators of the first-order and total-effect covariance matrices," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 67-92.
    14. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    15. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    16. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    17. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    18. Zhou, Changcong & Shi, Zhuangke & Kucherenko, Sergei & Zhao, Haodong, 2022. "A unified approach for global sensitivity analysis based on active subspace and Kriging," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Lamboni, M. & Iooss, B. & Popelin, A.-L. & Gamboa, F., 2013. "Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 45-54.
    20. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:194:y:2022:i:c:p:691-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.