IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v102y2012icp16-26.html
   My bibliography  Save this article

Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model

Author

Listed:
  • Flage, Roger
  • Coit, David W.
  • Luxhøj, James T.
  • Aven, Terje

Abstract

A model is described that determines an optimal inspection and maintenance scheme for a deteriorating unit with a stochastic degradation process with independent and stationary increments and for which the parameters are uncertain. This model and resulting maintenance plans offers some distinct benefits compared to prior research because the uncertainty of the degradation process is accommodated by a Bayesian approach and two new safety constraints have been applied to the problem: (1) with a given subjective probability (degree of belief), the limiting relative frequency of one or more failures during a fixed time interval is bounded; or (2) the subjective probability of one or more failures during a fixed time interval is bounded. In the model, the parameter(s) of a condition-based inspection scheduling function and a preventive replacement threshold are jointly optimized upon each replacement and inspection such as to minimize the expected long run cost per unit of time, but also considering one of the specified safety constraints. A numerical example is included to illustrate the effect of imposing each of the two different safety constraints.

Suggested Citation

  • Flage, Roger & Coit, David W. & Luxhøj, James T. & Aven, Terje, 2012. "Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 16-26.
  • Handle: RePEc:eee:reensy:v:102:y:2012:i:c:p:16-26
    DOI: 10.1016/j.ress.2012.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kallen, M.J. & van Noortwijk, J.M., 2005. "Optimal maintenance decisions under imperfect inspection," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 177-185.
    2. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    3. Aven, Terje & Castro, I.T., 2008. "A minimal repair replacement model with two types of failure and a safety constraint," European Journal of Operational Research, Elsevier, vol. 188(2), pages 506-515, July.
    4. Flage, R. & Aven, T., 2009. "On treatment of uncertainty in system planning," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 884-890.
    5. van Noortwijk, Jan M. & Cooke, Roger M. & Kok, Matthijs, 1995. "A Bayesian failure model based on isotropic deterioration," European Journal of Operational Research, Elsevier, vol. 82(2), pages 270-282, April.
    6. Barker, C.T. & Newby, M.J., 2009. "Optimal non-periodic inspection for a multivariate degradation model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 33-43.
    7. Nozer Singpurwalla & Alyson Wilson, 2009. "Probability, chance and the probability of chance," IISE Transactions, Taylor & Francis Journals, vol. 41(1), pages 12-22.
    8. Savaş Dayanik & Ülkü Gürler, 2002. "An Adaptive Bayesian Replacement Policy with Minimal Repair," Operations Research, INFORMS, vol. 50(3), pages 552-558, June.
    9. Dieulle, L. & Berenguer, C. & Grall, A. & Roussignol, M., 2003. "Sequential condition-based maintenance scheduling for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 150(2), pages 451-461, October.
    10. Juang, Muh-Guey & Anderson, Gary, 2004. "A Bayesian method on adaptive preventive maintenance problem," European Journal of Operational Research, Elsevier, vol. 155(2), pages 455-473, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    2. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Bismut, Elizabeth & Pandey, Mahesh D. & Straub, Daniel, 2022. "Reliability-based inspection and maintenance planning of a nuclear feeder piping system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    6. Truong-Ba, Huy & Cholette, Michael E. & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2021. "Condition-based inspection policies for boiler heat exchangers," European Journal of Operational Research, Elsevier, vol. 291(1), pages 232-243.
    7. Fritzsche, R. & Gupta, J.N.D. & Lasch, R., 2014. "Optimal prognostic distance to minimize total maintenance cost: The case of the airline industry," International Journal of Production Economics, Elsevier, vol. 151(C), pages 76-88.
    8. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Roger Flage, 2013. "On risk reduction principles in the context of maintenance optimisation modelling," Journal of Risk and Reliability, , vol. 227(3), pages 241-250, June.
    10. Faddoul, R. & Raphael, W. & Chateauneuf, A., 2018. "Maintenance optimization of series systems subject to reliability constraints," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 179-188.
    11. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    12. Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
    13. Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xuejing & Fouladirad, Mitra & Bérenguer, Christophe & Bordes, Laurent, 2010. "Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 921-934.
    2. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    3. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    4. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    5. P Vaidya & M Rausand, 2011. "Remaining useful life, technical health, and life extension," Journal of Risk and Reliability, , vol. 225(2), pages 219-231, June.
    6. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    8. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    9. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
    11. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    12. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    14. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    15. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    16. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    17. A Grall & M Fouladirad, 2008. "Maintenance decision rule with embedded online Bayesian change detection for gradually non-stationary deteriorating systems," Journal of Risk and Reliability, , vol. 222(3), pages 359-369, September.
    18. Fouladirad, Mitra & Grall, Antoine, 2011. "Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 611-618.
    19. Mitra Fouladirad & Antoine Grall, 2015. "Monitoring and condition-based maintenance with abrupt change in a system’s deterioration rate," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2183-2194, September.
    20. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:102:y:2012:i:c:p:16-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.