IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v222y2008i3p359-369.html
   My bibliography  Save this article

Maintenance decision rule with embedded online Bayesian change detection for gradually non-stationary deteriorating systems

Author

Listed:
  • A Grall
  • M Fouladirad

Abstract

The aim of a condition-based maintenance policy is to manage the available online information about a component or a (sub)system, usually its degradation level, in order to improve the maintenance decision-making. This paper tackles the problem of maintenance decision rules for stochastically deteriorating systems that are subject to changes of their degradation rate during a life cycle. A well-suited control-limit maintenance decision rule is considered with an embedded online change detection algorithm. The maintenance decision and change detection parameters are optimized with respect to the same global maintenance cost and according to the available information about the degradation process. The obtained policy is compared with more classical control limit condition-based maintenance policies without online change detection. The use of the embedded online detection algorithm shows its efficiency especially for systems subject to significantly different degradation rates.

Suggested Citation

  • A Grall & M Fouladirad, 2008. "Maintenance decision rule with embedded online Bayesian change detection for gradually non-stationary deteriorating systems," Journal of Risk and Reliability, , vol. 222(3), pages 359-369, September.
  • Handle: RePEc:sae:risrel:v:222:y:2008:i:3:p:359-369
    DOI: 10.1243/1748006XJRR141
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR141
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saassouh, B. & Dieulle, L. & Grall, A., 2007. "Online maintenance policy for a deteriorating system with random change of mode," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1677-1685.
    2. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    3. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    4. Dieulle, L. & Berenguer, C. & Grall, A. & Roussignol, M., 2003. "Sequential condition-based maintenance scheduling for a deteriorating system," European Journal of Operational Research, Elsevier, vol. 150(2), pages 451-461, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouladirad, Mitra & Grall, Antoine, 2011. "Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 611-618.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fouladirad, Mitra & Grall, Antoine, 2011. "Condition-based maintenance for a system subject to a non-homogeneous wear process with a wear rate transition," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 611-618.
    2. Mitra Fouladirad & Antoine Grall, 2015. "Monitoring and condition-based maintenance with abrupt change in a system’s deterioration rate," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2183-2194, September.
    3. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    6. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    7. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Zhao, Xuejing & Fouladirad, Mitra & Bérenguer, Christophe & Bordes, Laurent, 2010. "Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 921-934.
    9. E Deloux & B Castanier & C Bérenguer, 2008. "Maintenance policy for a deteriorating system evolving in a stressful environment," Journal of Risk and Reliability, , vol. 222(4), pages 613-622, December.
    10. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    11. Estelle Deloux & Mitra Fouladirad & Christophe Bérenguer, 2016. "Health-and-usage-based maintenance policies for a partially observable deteriorating system," Journal of Risk and Reliability, , vol. 230(1), pages 120-129, February.
    12. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    13. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    14. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    16. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    17. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    18. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    19. Jiang, R., 2010. "Optimization of alarm threshold and sequential inspection scheme," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 208-215.
    20. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:222:y:2008:i:3:p:359-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.