IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v55y2011i11p953-959.html
   My bibliography  Save this article

Car wash wastewater reclamation. Full-scale application and upcoming features

Author

Listed:
  • Zaneti, Rafael
  • Etchepare, Ramiro
  • Rubio, Jorge

Abstract

Recent features on car wash wastewater reclamation and results obtained in a full-scale car wash wastewater treatment and recycling are reported. The technique employed comprises a new flocculation-column flotation (FCF), sand filtration and final chlorination. Water usage and savings audits (20 weeks) showed that almost 70% reclamation was possible, and less than 40L of fresh water per wash was attained. Wastewater and reclaimed water were fully characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of reclamation aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. Noteworthy, this work showed a high count of fecal and total coliforms both in the wastewater and in the treated water, making the need of a final disinfection mandatory. The cost-benefit analysis shows that, for a car wash wastewater reclamation system in Brazil, at least 8 months were needed for the FCF-SC equipment amortization, when considering a demand over 30 washes per day. It is believed that the discussions on car wash wastewater reclamation criteria may assist alerting wash cars units and institutions to create laws in Brazil and elsewhere.

Suggested Citation

  • Zaneti, Rafael & Etchepare, Ramiro & Rubio, Jorge, 2011. "Car wash wastewater reclamation. Full-scale application and upcoming features," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 953-959.
  • Handle: RePEc:eee:recore:v:55:y:2011:i:11:p:953-959
    DOI: 10.1016/j.resconrec.2011.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911000814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghisi, Enedir & Tavares, Davi da Fonseca & Rocha, Vinicius Luis, 2009. "Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis," Resources, Conservation & Recycling, Elsevier, vol. 54(2), pages 79-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Qianxin & Chen, Yang & Pody, Robert & Cheng, Rong & Zheng, Xiang & Zhang, Zhenxing, 2015. "Public perception and acceptability toward reclaimed water in Tianjin," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 291-299.
    2. Barbara Ruffino, 2020. "Water Recovery from Floor Cleaning Operations of Industrial or Public Areas: The Results of a Field Test," Resources, MDPI, vol. 9(3), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreira Neto, Ronan Fernandes & Calijuri, Maria Lúcia & Carvalho, Isabella de Castro & Santiago, Aníbal da Fonseca, 2012. "Rainwater treatment in airports using slow sand filtration followed by chlorination: Efficiency and costs," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 124-129.
    2. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    3. Imteaz, Monzur Alam & Ahsan, Amimul & Shanableh, Abdallah, 2013. "Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 37-43.
    4. Proença, Lúcio Costa & Ghisi, Enedir & Tavares, Davi da Fonseca & Coelho, Gabriel Marcon, 2011. "Potential for electricity savings by reducing potable water consumption in a city scale," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 960-965.
    5. Geraldi, Matheus Soares & Ghisi, Enedir, 2017. "Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 169-180.
    6. Imteaz, Monzur Alam & Shanableh, Abdallah & Rahman, Ataur & Ahsan, Amimul, 2011. "Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1022-1029.
    7. Rahman, Ataur & Keane, Joseph & Imteaz, Monzur Alam, 2012. "Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 16-21.
    8. Elissavet Feloni & Panagiotis T. Nastos, 2024. "Evaluating Rainwater Harvesting Systems for Water Scarcity Mitigation in Small Greek Islands under Climate Change," Sustainability, MDPI, vol. 16(6), pages 1-14, March.
    9. Şevik, Seyfi & Aktaş, Ahmet, 2022. "Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays," Renewable Energy, Elsevier, vol. 181(C), pages 490-503.
    10. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    11. Stec, Agnieszka & Kordana, Sabina, 2015. "Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 84-94.
    12. Imteaz, Monzur Alam & Adeboye, Omotayo B. & Rayburg, Scott & Shanableh, Abdallah, 2012. "Rainwater harvesting potential for southwest Nigeria using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 62(C), pages 51-55.
    13. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    14. Karolina Fitobór & Bernard Quant, 2021. "Is the Microfiltration Process Suitable as a Method of Removing Suspended Solids from Rainwater?," Resources, MDPI, vol. 10(3), pages 1-16, March.
    15. Abedin Mohammad-Hosseinpour & José-Luis Molina, 2022. "Improving the Sustainability of Urban Water Management through Innovative Groundwater Recharge System (GRS)," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    16. Rashidi Mehrabadi, Mohammad Hossein & Saghafian, Bahram & Haghighi Fashi, Fereshte, 2013. "Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 86-93.
    17. Imteaz, Monzur Alam & Ahsan, Amimul & Naser, Jamal & Rahman, Ataur, 2011. "Reliability analysis of rainwater tanks in Melbourne using daily water balance model," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 80-86.
    18. Imteaz, Monzur Alam & Rahman, Ataur & Ahsan, Amimul, 2012. "Reliability analysis of rainwater tanks: A comparison between South-East and Central Melbourne," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 1-7.
    19. Cristina Matos & Isabel Bentes & Cristina Santos, 2024. "Rainwater Harvesting System for Industrial Buildings: The Case Study of Continental Advanced Antenna, Vila Real, Portugal," Sustainability, MDPI, vol. 16(11), pages 1-12, May.
    20. Silva Vieira, A. & Weeber, M. & Ghisi, E., 2013. "Self-cleaning filtration: A novel concept for rainwater harvesting systems," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 67-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:55:y:2011:i:11:p:953-959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.