IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v122y2017icp295-306.html
   My bibliography  Save this article

Biopolymer production and end of life comparisons using life cycle assessment

Author

Listed:
  • Hottle, Troy A.
  • Bilec, Melissa M.
  • Landis, Amy E.

Abstract

This paper presents an attributional life cycle assessment of biopolymers and traditional plastics using real world disposal methods based on collected data and existing inventories. The focus of this LCA is to investigate actual disposal methods for the end of life phase of biopolymers and traditional fossil-based plastics relative to their corresponding production impacts. This paper connects commonly available methods of disposal for traditional fossil-based plastics and the compostability of polylactic acid and thermoplastic starch to compare these materials not just based on production impacts but also on various scenarios for recycling, composting, and landfilling. Additionally, three traditional resins were evaluated (PET, HDPE, and LDPE) using fossil and bio-based production pathways to assess the performance of bio-based products in the recycling stream. The results demonstrate real environmental tradeoffs associated with agricultural production of plastics and the consequential changes resulting from shifting from recyclable to compostable products. The potential for methane production in landfills is a significant factor for global warming impacts associated with biopolymers while recycling provides major benefits in the global warming and fossil fuel depletion categories. A sensitivity analysis was conducted to investigate the relative importance of locale-specific factors such as travel distances and sorting technologies to the end of life treatment methods of recycling, composting, and landfilling. The results show that composting has some advantages, especially when compared to impacts associated with landfilling, but that recycling provides the greatest benefits at end of life.

Suggested Citation

  • Hottle, Troy A. & Bilec, Melissa M. & Landis, Amy E., 2017. "Biopolymer production and end of life comparisons using life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 295-306.
  • Handle: RePEc:eee:recore:v:122:y:2017:i:c:p:295-306
    DOI: 10.1016/j.resconrec.2017.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917300708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roland Geyer & Brandon Kuczenski & Trevor Zink & Ashley Henderson, 2016. "Common Misconceptions about Recycling," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1010-1017, October.
    2. Björklund, Anna & Finnveden, Göran, 2005. "Recycling revisited—life cycle comparisons of global warming impact and total energy use of waste management strategies," Resources, Conservation & Recycling, Elsevier, vol. 44(4), pages 309-317.
    3. Koller, Martin & Sandholzer, Daniel & Salerno, Anna & Braunegg, Gerhart & Narodoslawsky, Michael, 2013. "Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 64-71.
    4. Meeks, Diana & Hottle, Troy & Bilec, M.M. & Landis, A.E., 2015. "Compostable biopolymer use in the real world: Stakeholder interviews to better understand the motivations and realities of use and disposal in the US," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 134-142.
    5. Martin Weiss & Juliane Haufe & Michael Carus & Miguel Brandão & Stefan Bringezu & Barbara Hermann & Martin K. Patel, 2012. "A Review of the Environmental Impacts of Biobased Materials," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 169-181, April.
    6. Sergio Puente & Sofía Galán, 2014. "Analysis of composition effects on wage behaviour," Economic Bulletin, Banco de España, issue FEB, pages 25-28, February.
    7. Yates, Madeleine R. & Barlow, Claire Y., 2013. "Life cycle assessments of biodegradable, commercial biopolymers—A critical review," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 54-66.
    8. repec:bde:journl:v:02:y:2014:p:05 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roel J. K. Helmes & Pietro Goglio & Silvia Salomoni & Daan S. van Es & Iris Vural Gursel & Lusine Aramyan, 2022. "Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    2. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Halayit Abrha & Jonnathan Cabrera & Yexin Dai & Muhammad Irfan & Abrham Toma & Shipu Jiao & Xianhua Liu, 2022. "Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    4. Zita Markevičiūtė & Visvaldas Varžinskas, 2022. "Plant-Origin Feedstock Applications in Fully Green Food Packaging: The Potential for Tree-Free Paper and Plant-Origin Bio-Plastics in the Baltic Sea Region," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    5. Kumar, Manish & Bolan, Shiv & Padhye, Lokesh P. & Konarova, Muxina & Foong, Shin Ying & Lam, Su Shiung & Wagland, Stuart & Cao, Runzi & Li, Yang & Batalha, Nuno & Ahmed, Mohamed & Pandey, Ashok & Sidd, 2023. "Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks," Applied Energy, Elsevier, vol. 345(C).
    6. Sebastian Spierling & Venkateshwaran Venkatachalam & Marina Mudersbach & Nico Becker & Christoph Herrmann & Hans-Josef Endres, 2020. "End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective," Resources, MDPI, vol. 9(7), pages 1-20, July.
    7. Tan, Quanyin & Yang, Liyao & Wei, Fan & Chen, Yuan & Li, Jinhui, 2023. "Comparative life cycle assessment of polyethylene agricultural mulching film and alternative options including different end-of-life routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Ana Fonseca & Edgar Ramalho & Ana Gouveia & Filipa Figueiredo & João Nunes, 2023. "Life Cycle Assessment of PLA Products: A Systematic Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    9. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meeks, Diana & Hottle, Troy & Bilec, M.M. & Landis, A.E., 2015. "Compostable biopolymer use in the real world: Stakeholder interviews to better understand the motivations and realities of use and disposal in the US," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 134-142.
    2. Miller, Sabbie A. & Srubar, Wil V. & Billington, Sarah L. & Lepech, Michael D., 2015. "Integrating durability-based service-life predictions with environmental impact assessments of natural fiber–reinforced composite materials," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 72-83.
    3. Changping Zhao & Juanjuan Sun & Yun Zhang, 2022. "A Study of the Drivers of Decarbonization in the Plastics Supply Chain in the Post-COVID-19 Era," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    4. Lazarevic, David & Aoustin, Emmanuelle & Buclet, Nicolas & Brandt, Nils, 2010. "Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 246-259.
    5. Sebastian Spierling & Venkateshwaran Venkatachalam & Marina Mudersbach & Nico Becker & Christoph Herrmann & Hans-Josef Endres, 2020. "End-of-Life Options for Bio-Based Plastics in a Circular Economy—Status Quo and Potential from a Life Cycle Assessment Perspective," Resources, MDPI, vol. 9(7), pages 1-20, July.
    6. Xavier Tanguay & Gatien Geraud Essoua Essoua & Ben Amor, 2021. "Attributional and consequential life cycle assessments in a circular economy with integration of a quality indicator: A case study of cascading wood products," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1462-1473, December.
    7. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    8. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    9. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    10. Ángel Luis Gómez, 2020. "Efectos de los cambios en la composición del empleo sobre la evolución de los salarios en la zona del euro: un análisis con datos de panel," Occasional Papers 2028, Banco de España.
    11. Sarah Schmidt & David Laner, 2023. "The environmental performance of plastic packaging waste management in Germany: Current and future key factors," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1447-1460, December.
    12. Sahlin, Jenny & Ekvall, Tomas & Bisaillon, Mattias & Sundberg, Johan, 2007. "Introduction of a waste incineration tax: Effects on the Swedish waste flows," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 827-846.
    13. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    14. Florian Lüdeke‐Freund & Stefan Gold & Nancy M. P. Bocken, 2019. "A Review and Typology of Circular Economy Business Model Patterns," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 36-61, February.
    15. Erik G. Hansen & Ferdinand Revellio, 2020. "Circular value creation architectures: Make, ally, buy, or laissez‐faire," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1250-1273, December.
    16. Zhao, Yan & Deng, Wenjing, 2014. "Environmental impacts of different food waste resource technologies and the effects of energy mix," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 214-221.
    17. Sourabh Jain & Jury Gualandris, 2023. "When does upcycling mitigate climate change? The case of wet spent grains and fruit and vegetable residues in Canada," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 522-534, April.
    18. Karen Page Winterich & Rebecca Walker Reczek & Tamar Makov, 2024. "How lack of knowledge on emissions and psychological biases deter consumers from taking effective action to mitigate climate change," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1475-1494, October.
    19. Piero Morseletto, 2020. "Restorative and regenerative: Exploring the concepts in the circular economy," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 763-773, August.
    20. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:122:y:2017:i:c:p:295-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.