IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v44y2005i4p309-317.html
   My bibliography  Save this article

Recycling revisited—life cycle comparisons of global warming impact and total energy use of waste management strategies

Author

Listed:
  • Björklund, Anna
  • Finnveden, Göran

Abstract

Recycling of waste materials has been analysed from a life cycle perspective in a number of studies over the past 10–15 years. Publications comparing the global warming impact and total energy use of recycling versus incineration and landfilling were reviewed in order to find out to what extent they agree or contradict each other, and whether there are generally applicable conclusions to be drawn when certain key factors are considered. Four key factors with a significant influence on the ranking between recycling, incineration, and landfilling were identified. Producing materials from recycled resources is often, but not always, less energy intensive and causes less global warming impact than from virgin resources. For non-renewable materials the savings are of such a magnitude, that apparently the only really crucial factor is what material is replaced. For paper products, however, the savings of recycling are much smaller. The ranking between recycling and incineration of paper is sensitive to for instance paper quality, energy source avoided by incineration, and energy source at the mill.

Suggested Citation

  • Björklund, Anna & Finnveden, Göran, 2005. "Recycling revisited—life cycle comparisons of global warming impact and total energy use of waste management strategies," Resources, Conservation & Recycling, Elsevier, vol. 44(4), pages 309-317.
  • Handle: RePEc:eee:recore:v:44:y:2005:i:4:p:309-317
    DOI: 10.1016/j.resconrec.2004.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344905000029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2004.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, Emily J. & Zhang, Chenlong & Anzalone, Nick & Pearce, Joshua M., 2015. "Polymer recycling codes for distributed manufacturing with 3-D printers," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 24-30.
    2. Zhao, Yan & Deng, Wenjing, 2014. "Environmental impacts of different food waste resource technologies and the effects of energy mix," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 214-221.
    3. Turner, David A. & Williams, Ian D. & Kemp, Simon, 2015. "Greenhouse gas emission factors for recycling of source-segregated waste materials," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 186-197.
    4. Vossberg, Cherilyn & Mason-Jones, Kyle & Cohen, Brett, 2014. "An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 39-49.
    5. Williams, Thomas G.J.L. & Heidrich, Oliver & Sallis, Paul J., 2010. "A case study of the open-loop recycling of mixed plastic waste for use in a sports-field drainage system," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 118-128.
    6. Lazarevic, David & Aoustin, Emmanuelle & Buclet, Nicolas & Brandt, Nils, 2010. "Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 246-259.
    7. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "A waste management planning based on substance flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 54-66.
    8. Sahlin, Jenny & Ekvall, Tomas & Bisaillon, Mattias & Sundberg, Johan, 2007. "Introduction of a waste incineration tax: Effects on the Swedish waste flows," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 827-846.
    9. Hottle, Troy A. & Bilec, Melissa M. & Landis, Amy E., 2017. "Biopolymer production and end of life comparisons using life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 295-306.
    10. Meylan, Grégoire & Ami, Helen & Spoerri, Andy, 2014. "Transitions of municipal solid waste management. Part II: Hybrid life cycle assessment of Swiss glass-packaging disposal," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 16-27.
    11. Sathre, Roger & Gustavsson, Leif, 2006. "Energy and carbon balances of wood cascade chains," Resources, Conservation & Recycling, Elsevier, vol. 47(4), pages 332-355.
    12. van Sluisveld, Mariësse A.E. & Worrell, Ernst, 2013. "The paradox of packaging optimization – a characterization of packaging source reduction in the Netherlands," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 133-142.
    13. Brattebø, Helge & Reenaas, Marte, 2012. "Comparing CO2 and NOX emissions from a district heating system with mass-burn waste incineration versus likely alternative solutions – City of Trondheim, 1986–2009," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 147-158.
    14. Merrild, Hanna & Damgaard, Anders & Christensen, Thomas H., 2008. "Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1391-1398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:44:y:2005:i:4:p:309-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.