IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i3p923-936.html
   My bibliography  Save this article

Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi

Author

Listed:
  • Christoph Helbig
  • Yasushi Kondo
  • Shinichiro Nakamura

Abstract

Keeping materials in use for a long time is key to reducing primary material demand and environmental impacts of resource use. Recycling yields of metals should only be limited by thermodynamically unavoidable losses of the remelting processes for well‐defined scraps. In practice, however, additional dissipative losses for metals occur due to incomplete collection of end‐of‐life products, insufficient waste sorting, remelting of contaminated or diluted scrap, and the downcycling of secondary materials. Here we simultaneously trace the fate of Al, Cr, Fe, Ni, Cu, Zn, and Pb in MaTrace‐multi, a planetary dynamic material flow system. Metals pass the processes mining, fabrication, use‐phase, collection, sorting, scrap allocation, remelting, and secondary material allocation. We calculate the circularity and longevity of the cohort of metal requirements for the final demand of 1 year. Nickel is found to have the best longevity at 116 (78 to 205) years, whereas zinc only has a longevity of 47 (37 to 61) years. While nickel, on average, is used in 5.13 (3.45 to 8.78) applications before dissipation, zinc is used only in 1.94 (1.52 to 2.47) applications. Our study results can be used to model the impacts of circular economy policies and technological developments on global metal cycles beyond the scope of studies modeling one metal at a time. This article met the requirements for a Gold–Gold JIE data openness badge described at http://jie.click/badges

Suggested Citation

  • Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:3:p:923-936
    DOI: 10.1111/jiec.13219
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13219
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    2. T. E. Graedel & Dick van Beers & Marlen Bertram & Kensuke Fuse & Robert B. Gordon & Alexander Gritsinin & Ermelinda M. Harper & Amit Kapur & Robert J. Klee & Reid Lifset & Laiq Memon & Sabrina Spatari, 2005. "The Multilevel Cycle of Anthropogenic Zinc," Journal of Industrial Ecology, Yale University, vol. 9(3), pages 67-90, July.
    3. Éléonore Lèbre & Glen Corder & Artem Golev, 2017. "The Role of the Mining Industry in a Circular Economy: A Framework for Resource Management at the Mine Site Level," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 662-672, June.
    4. Nils Johansson & Joakim Krook, 2021. "How to handle the policy conflict between resource circulation and hazardous substances in the use of waste?," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 994-1008, August.
    5. Hatayama, Hiroki & Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2012. "Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 8-14.
    6. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    7. Mao, J.S. & Dong, Jaimee & Graedel, T.E., 2008. "The multilevel cycle of anthropogenic lead," Resources, Conservation & Recycling, Elsevier, vol. 52(8), pages 1058-1064.
    8. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    9. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.
    10. Mao, J.S. & Dong, Jaimee & Graedel, T.E., 2008. "The multilevel cycle of anthropogenic lead," Resources, Conservation & Recycling, Elsevier, vol. 52(8), pages 1050-1057.
    11. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Shinichiro Nakamura & Tetsuya Nagasaka, 2014. "Unintentional Flow of Alloying Elements in Steel during Recycling of End-of-Life Vehicles," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 242-253, April.
    12. Meylan, Grégoire & Reck, Barbara K., 2017. "The anthropogenic cycle of zinc: Status quo and perspectives," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 1-10.
    13. Barbara K. Reck & Vera Susanne Rotter, 2012. "Comparing Growth Rates of Nickel and Stainless Steel Use in the Early 2000s," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 518-528, August.
    14. Stefanie Klose & Stefan Pauliuk, 2021. "Quantifying longevity and circularity of copper for different resource efficiency policies at the material and product levels," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 979-993, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Ciacci & Cristina T. de Matos & Barbara K. Reck & Dominic Wittmer & Elena Bernardi & Fabrice Mathieux & Fabrizio Passarini, 2022. "Material system analysis: Characterization of flows, stocks, and performance indicators of manganese, nickel, and natural graphite in the EU, 2012–2016," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1247-1260, August.
    2. Meylan, Grégoire & Reck, Barbara K., 2017. "The anthropogenic cycle of zinc: Status quo and perspectives," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 1-10.
    3. Chen, Weiqiang & Shi, Lei & Qian, Yi, 2010. "Substance flow analysis of aluminium in mainland China for 2001, 2004 and 2007: Exploring its initial sources, eventual sinks and the pathways linking them," Resources, Conservation & Recycling, Elsevier, vol. 54(9), pages 557-570.
    4. Lee, Chia-ho & Chen, Pi-cheng & Ma, Hwong-wen, 2012. "Direct and indirect lead-containing waste discharge in the electrical and electronic supply chain," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 29-35.
    5. Zhiyong Zhou & Jianhui Huang & Ming Li & Yao Lu, 2022. "The Dynamic Evolution of the Material Flow of Lithium Resources in China," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    6. Christoph Helbig & Jonas Huether & Charlotte Joachimsthaler & Christian Lehmann & Simone Raatz & Andrea Thorenz & Martin Faulstich & Axel Tuma, 2022. "A terminology for downcycling," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1164-1174, August.
    7. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    8. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    9. Nechifor, Victor & Calzadilla, Alvaro & Bleischwitz, Raimund & Winning, Matthew & Tian, Xu & Usubiaga, Arkaitz, 2020. "Steel in a circular economy: Global implications of a green shift in China," World Development, Elsevier, vol. 127(C).
    10. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    11. Berzi, Lorenzo & Delogu, Massimo & Pierini, Marco & Romoli, Filippo, 2016. "Evaluation of the end-of-life performance of a hybrid scooter with the application of recyclability and recoverability assessment methods," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 140-155.
    12. Andersson, Magnus & Ljunggren Söderman, Maria & Sandén, Björn A., 2019. "Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    13. García-Barragán, Juan F. & Eyckmans, Johan & Rousseau, Sandra, 2019. "Defining and Measuring the Circular Economy: A Mathematical Approach," Ecological Economics, Elsevier, vol. 157(C), pages 369-372.
    14. Petr Bača & Petr Vanýsek, 2023. "Issues Concerning Manufacture and Recycling of Lead," Energies, MDPI, vol. 16(11), pages 1-20, June.
    15. Anna Luthin & Marzia Traverso & Robert H. Crawford, 2024. "Circular life cycle sustainability assessment: An integrated framework," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 41-58, February.
    16. Cris Garcia-Saravia Ortiz-de-Montellano & Yvonne Meer, 2022. "A Theoretical Framework for Circular Processes and Circular Impacts Through a Comprehensive Review of Indicators," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 291-314, June.
    17. Julien Pedneault & Guillaume Majeau‐Bettez & Manuele Margni, 2023. "How much sorting is required for a circular low carbon aluminum economy?," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 977-992, June.
    18. Pothen, Frank & Hundt, Carolin, 2024. "European post-consumer steel scrap in 2050: A review of estimates and modeling assumptions," Jena Contributions to Economic Research Jahrgang 2024/1, Ernst-Abbe-Hochschule Jena – University of Applied Sciences, Department of Business Administration.
    19. Buchner, Hanno & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Potential recycling constraints due to future supply and demand of wrought and cast Al scrap—A closed system perspective on Austria," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 135-142.
    20. Yuhua Guo & Junmao Qie & Chunxia Zhang & Yuantao Yang, 2021. "Material flow analysis of zinc during the manufacturing process in integrated steel mills in China," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1009-1020, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:3:p:923-936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.